
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 51. Многоатомный газ
Свободную энергию многоатомного газа, как и двухатомного, можно представить в виде суммы трех частей—поступательной, вращательной и колебательной. Поступательная часть по-прежнему характеризуется теплоемкостью и химической постоянной, равными
Благодаря большой величине моментов инерции многоатомных молекул (и соответственно малости их вращательных квантов) их вращение можно всегда рассматривать классически*). Многоатомная молекула обладает тремя вращательными степенями свободы и тремя в общем случае различными главными моментами инерции 1г, /2, /3; поэтому ее кинетическая энергия вращения есть
.Л^'^
eBp = 27^ + 2jr+277, (51,2)
где I, г), £—координаты вращающейся системы, оси которой совпадают с главными осями инерции молекулы (мы оставляем пока в стороне особый случай молекул, составленных из атомов, расположенных на одной прямой). Это выражение должно быть подставлено в статистический интеграл
ZBp=S'e-VrdTBp, (51,3)
где
dx*v
=
/о
«,»
т^
йМч
dAfс
d(Pl
Жр„
йуь
а штрих у интеграла означает, как обычно, что интегрирование должно производиться лишь по тем ориентациям молекулы, которые физически отличны друг от друга.
Если молекула обладает какими-либо осями симметрии, то повороты вокруг этих осей совмещают молекулу саму с собой и сводятся к перестановке одинаковых атомов. Ясно, что число физически неразличимых ориентации молекулы равно числу допускаемых ею различных поворотов вокруг осей симметрии (включая тождественное преобразование—поворот на 360°). Обозначив это число посредством о2), можно производить интегрирование в (51,3) просто по всем ориентациям, одновременно разделив все выражение на а.
J)
Эффекты
квантования вращения могли бы наблюдаться
лишь у метана СН4,
где они должны появиться при температурах
около 50° К (см. задачу к
этому
параграфу).
2)
Так, у Н26
(равнобедренный
треугольник) а = 2; у NH3
(треугольная
правильная пирамида) а=3;
у
СН4
(тетраэдр) а=12; у С6Н6
(правильный шестиугольник) а=12.
Отсюда свободная энергия
F
= —
i-NTlnT
— NTln (8я/1/2/з)1/а
t (51)4)
2 aft3
Таким образом, для вращательной теплоемкости имеем в соответствии с § 44
свр=|-, (51,5)
а химическая постоянная
gEp = ln , (51>6)
Если все атомы в молекуле расположены на одной прямой (линейная молекула), то она обладает, как и двухатомная молекула, всего двумя вращательными степенями свободы и одним моментом инерции /. Вращательные теплоемкость и химическая постоянная равны, как и у двухатомного газа,
СвР=1, ^P = lnjp-, (51,7)
где о=1 для несимметричной молекулы (например, NNO) и а = 2 для молекулы, симметричной относительно своей середины (например, ОСО).
Колебательная часть свободной энергии многоатомного газа вычисляется аналогично тому, как это было сделано нами для двухатомного газа. Разница заключается в том, что многоатомная молекула обладает не одной, а несколькими колебательными степенями свободы. Именно, и-атомная (нелинейная) молекула обладает, очевидно, гК0Л=Зп— 6 колебательными степенями свободы; для линейной же n-атомной молекулы гК0Я = Зп—5 (см. § 44). Число колебательных степеней свободы определяет число так называемых нормальных колебаний молекулы, каждому из которых соответствует своя частота та (индекс а нумерует нормальные колебания). Надо иметь в виду, что некоторые из частот соа могут совпадать друг с другом; в таких случаях говорят о кратной частоте.
В гармоническом приближении, когда мы считаем колебания малыми (только такие температуры мы и рассматриваем), все нормальные колебания независимы, и колебательная энергия есть сумма энергий каждого колебания в отдельности. Поэтому колебательная статистическая сумма распадается на произведение статистических сумм отдельных колебаний, а для свободной энергии Ркол получается сумма выражений типа (49,1)
F^NT^lnil-e-^a/T). (51,8)
а
В эту сумму каждая частота входит в числе раз, равном ее кратности. Такого же рода суммы получаются соответственно для колебательных частей других термодинамических величин.
Каждое из нормальных колебаний дает в своем классическом предельном случае (Т ^>fma) вклад в теплоемкость, равный с^л=1; при Т, большем наибольшего из ^соа, получилось бы
^кол = ''кол- (51,9)
Фактически, однако, этот предел не достигается, так как многоатомные молекулы обычно распадаются при значительно более низких температурах.
Различные частоты соа многоатомной молекулы разбросаны обычно в очень широком интервале значений. По мере повышения температуры постепенно «включаются» в теплоемкость различные нормальные колебания. Это обстоятельство приводит к тому, что теплоемкость многоатомных газов в довольно широких интервалах температуры часто можно считать примерно постоянной.
Упомянем о возможности своеобразного перехода колебаний во вращение, пример которого представляет молекула этана С2Нв. Эта молекула построена из двух групп СН3, находящихся на определенном расстоянии друг от друга и определенным образом взаимно ориентированных. Одно из нормальных колебаний молекулы представляет собой «крутильное колебание», при котором одна из групп СН3 поворачивается относительно другой. При увеличении энергии колебаний их амплитуда растет и в конце концов, при достаточно высоких температурах, колебания переходят в свободное вращение. В результате вклад этой степени свободы в теплоемкость, достигающий при полном возбуждении колебаний примерно величины 1, при дальнейшем повышении температуры начинает падать, асимптотически приближаясь к характерному для вращения значению 1/2.
Наконец, укажем, что если молекула обладает отличным от нуля спином S (например, молекулы N02, С102), то к химической постоянной добавляется величина
£s=ln(2S+l). (51,10)
Задача
Определить вращательную статистическую сумму для метана при низких температурах.
Решение. Как уже было указано в примечании на стр. 170, при достаточно низких температурах вычисление ZBp для метана должно производиться квантовым образом.
Молекула СН4 имеет форму тетраэдра и относится к типу шарового волчка, так что ее вращательные уровни равны -^j-J (J+1), где /—общее значение
трех главных моментов инерции, /—вращательное квантовое число. Так как спин ядра Н равен t = 1/2, а спин ядра атома углерода С12 равен нулю, то полный ядерный спин молекулы СН4 может быть равен 0, 1, 2 (соответствующие ядерные статистические веса: 1, 3, 5; см. III, § 105, задача 5). Для каждого данного значения J существует по определенному числу состояний с различными значениями полного ядерного спина. В следующей таблице даны эти числа для первых пяти значений J:
ядерный спин: 0 1 2
J = 0 — — 1
У=1 — 1 —
1=2 2 1 —
1 = 3 — 2 1
J=4 2 2 1
Значение суммы ZBp, получающееся при учете полных кратностей вырождения по направлениям момента вращения и ядерного спина, надо еще разделить на 16, если мы условимся отсчитывать энтропию от значения In (2i' + l)4 = = In 16 (ср. примечание на стр. 163). В результате получим
„ _5 9 "7F,25 "37Г ,72 -67Т,И7 -107Т,
^"ш+Тб* Мб ~мб "г" 16 ~г"'