
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 46. Одноатомный газ. Влияние электронного момента
Если в нормальном состоянии атома отличен от нуля один из моментов L или S, то нормальный уровень по-прежиему не обладает тонкой структурой. Фактически отсутствие тонкой структуры нормального уровня всегда связано с равенством нулю орбитального момента L; спин же 5 бывает и отличным от нуля (например, атомы в парах щелочных металлов).
Уровень со спином S вырожден с кратностью 2S +1 • Все отличие по сравнению с рассмотренным в предыдущем параграфе случаем заключается лишь в том, что статистическая сумма Z станет равной 2S + 1 (вместо 1), в результате чего к химической постоянной (45,4) добавится величина г)
Ca=ln(2S + l). (46,1)
Если нормальный терм атома обладает тонкой структурой, то надо иметь в виду, что интервалы этой структуры, вообще говоря, могут быть сравнимыми с Т; поэтому в статистической сумме должны быть учтены все компоненты тонкой структуры нормального терма.
Как известно, компоненты тонкой структуры отличаются значениями полного момента атома (при одних и тех же орбитальном моменте L и спине S). Обозначим эти уровни, отсчитываемые от наиболее низкого из-них, посредством е}. Каждый уровень с
*)
Выпишем для справок формулу для
химического потенциала одноатомного
идеального газа со статистическим
весом (кратностью вырождения) основного
состояния g:
Р
/2я&2\з/2
1
_.
Г
N
/2яА2\з/2
Р
/2яЙа\а/2] Г
N
/2я12у
«Т*/»
\
m
J
~
[gV
\
тТ
)
ц
=
Т\п
(46,1а)
Эта
формула относится и к больцмановскому
газу из элементарных частиц; так, для
электронного газа g—2.
данным J вырожден по направлениям полного момента с кратностью 2У-г-11)- Поэтому статистическая сумма приобретает вид
Z = 2(2^ + l)e"E^r; (46,2)
суммирование производится по всем возможным (при данных L и S) значениям J. Для свободной энергии получаем
F = — NT\r\
(46,3)
Это выражение существенно упрощается в двух предельных случаях. Предположим, что температура настолько высока, что Т велико по сравнению со всеми интервалами тонкой структуры:
Тогда можно положить e~*JlT та 1 и Z становится равным просто полному числу компонент тонкой структуры (25+1) (2L + 1). В выражение для свободной энергии войдет прежняя постоянная теплоемкость cv = 9/2, а к химической постоянной (45,4) добавится величина
£M = ln(2S + l)(2L + l). (46,4)
Такие же выражения для термодинамических величин (с другим £) получаются и в обратном предельном случае, когда Т мало по сравнению с интервалами тонкой структуры2). В этом случае в сумме (46,2) можно опустить все члены из исключением того, в котором еу=0 (наиболее низкая компонента тонкой структуры, т. е. нормальный уровень атома). В результате дополнительный по отношению к (45,4) член в химической постоянной окажется равным
£}=1п(2/ + 1), (46,5)
где / есть полный момент атома в нормальном состоянии.
1) Мы
предполагаем, что имеет место так
называемый рассель-саундеров-
ский
случай связи в атоме,—см. III, § 72.
2) Для
примера укажем, что величины zjjk
для
компонент триплетного
нормального
терма атома кислорода равны 230 и 320°,
для компонент квин-
тетного нормального
терма атома железа они имеют значения
от 600 до 1400°,
для дублетного нормального
терма атома хлора—1300°.
До сих пор мы полностью отвлекались от возможного существования у атома отличного от нуля ядерного спина i. Как известно, наличие ядерного спина приводит к так называемому сверхтонкому расщеплению атомных уровней. Интервалы этой структуры, однако, настолько ничтожны, что их можно считать малыми по сравнению с Т при всех вообще температурах, при которых газ существует как газ *). Поэтому при вычислении статистической суммы разностями энергий компонент сверхтонкого мультиплета можно полностью пренебречь и учесть это расщепление только как увеличение кратности вырождения всех уровней (а потому и суммы Z) в 2i +1 раз. Соответственно, в свободной энергии появится дополнительный «ядерный» член
Fn = -NT Щ21 + 1). (46,6)
Этот член не меняет теплоемкости газа (соответствующая анергия Еяд = 0) и сводится лишь к изменению энтропии на 5ЯД = N In (2i +1), т. е. химической постоянной на £8Д = In (2s + 1).
Ввиду крайней слабости взаимодействия ядерного спина с электронной оболочкой «ядерная» часть термодинамических величин обычно не играет никакой роли в различных тепловых процессах, выпадая вовсе из уравнений. Поэтому мы будем, как это обычно принято, опускать эти члены; другими словами, условимся отсчитывать энтропию не от нуля, а от значения 5ЯД, обусловленного ядерными спинами.