
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 43. Одноатомный идеальный газ
Полное вычисление свободной энергии (а с нею и остальных термодинамических величин) идеального газа требует конкретного вычисления статистической суммы, стоящей в аргументе логарифма в формуле (42,3)
k
Здесь г'к представляют собой уровни энергии атома или молекулы (исключается кинетическая энергия поступательного движения частицы). Если производить суммирование лишь по всем различным уровням энергии, то надо учесть, что уровень может быть вырожденным, и тогда соответствующий член должен войти в сумму по всем состояниям столько раз, какова кратность вырождения. Обозначим последнюю посредством gk\ в этой связи кратность вырождения уровня часто называют его статистическим весом. Опуская для краткости штрих у г'к, напишем интересующую нас статистическую сумму в виде
2 = 2&е-е*/Г- (45,1)
k
(45,2)
eV / тТ
F = — NT\n
Переходя к рассмотрению одноатомных газов, сделаем, прежде всего, следующее существенное замечание. По мере повышения температуры в газе увеличивается число атомов, находящихся в возбужденных состояниях, в том числе и в состояниях непрерывного спектра, соответствующих ионизации атома. При не слишком высоких температурах число ионизованных атомов в газе
0ДН0ЛТ0МНЫЙ ИДЕАЛЬНЫЙ ГАЗ
153
относительно совершенно ничтожно. Существенно, однако, что газ оказывается практически полностью ионизованным уже при температурах, для которых Т порядка величины энергии ионизации /ион (а не только при Т^>1Я0В—см. об этом § 104). Поэтому неионизованный газ имеет смысл рассматривать лишь при температурах, удовлетворяющих условию T^I^1).
Как известно, атомные термы (отвлекаясь от их тонкой структуры) располагаются таким образом, что расстояние от нормального до первого возбужденного уровня сравнимо по величине с энергией ионизации. Поэтому при температурах Т<^.1шя в газе будут практически отсутствовать не только ионизованные, но и возбужденные атомы, так что можно считать все атомы находящимися в нормальном состоянии.
Рассмотрим, прежде всего, простейший случай атомов, которые в своем нормальном состоянии не обладают ни орбитальным моментом, ни спином (L = S = 0); таковы, например, атомы благородных газов. При этом нормальный уровень не вырожден, и статистическая сумма сводится к одному члену: Z = exp(—е0/Т). Для одноатомных газов обычно полагают е0 = 0, т. е. отсчитывают энергию от нормального уровня атома; тогда Z=l. Разлагая логарифм в (45,2) на сумму нескольких членов, мы получим для свободной энергии выражение типа (43,1) с постоянной теплоемкостью
c„ = f (45,3)
и химической постоянной
С = 11п5^ <«'4>
(О. Sackur, Н. Tetrode, 1912).
*)
Для различных атомов значения температуры
IU0H/k
лежат
между 5-104°
(атомы щелочных металлов) и 28 • 104°
(гелий).-
2)
Электронная часть термодинамических
величин, разумеется, ни при каких
условиях не может рассматриваться
классическим образом. Отметим в этой
связи то обстоятельство (по существу
молчаливо подразумевавшееся нами уже
ранее), что в классической статистике
атомы должны рассматриваться как
частицы, не обладающие внутренним
строением. Невозможность применения
к внутриатомным явлениям статистики,
основанной на классической механике,
лишний раз видна из нелепости, к которой
привела бы подстановка в клаеси-
Полученные выражения позволяют вывести критерий применимости статистики Больцмана. В этой статистике предполагаются малыми числа
пл=е т <1
(см. (37,1)). Достаточно, очевидно, потребовать выполнения условия
Для химического потенциала ц = Ф/Ы имеем из (43,3) со значениями cv и £ из (45,3—4)
ц = Т1п
Р /2яА2\8/2 1 Т5/2 ^ щ
= 71п
N_ /2лА«\з/8 V [ тТ
(45,5)
Поэтому получаем критерий
N /Р\3/2 -
(45,6)
Это условие требует при заданной температуре достаточной разреженности газа. Подстановка численных значений обнаруживает, что фактически для всех атомарных (и молекулярных) газов это условие могло бы нарушиться лишь при таких плотностях, при которых становится существенным взаимодействие частиц, и газ уже все равно нельзя считать идеальным.
Полезно указать следующее наглядное истолкование полученного критерия. Поскольку большинство атомов обладает энергией порядка Т, а потому импульсом ~УпгТ, то можно сказать, что все атомы занимают в фазовом пространстве объем ~ V (тТ)3/2. На этот объем приходится ~V (пгТу/2/fa квантовых состояний. В больцмановском случае это число должно быть велико по сравнению с числом N частиц, откуда и получается (45,6).
ческие
формулы распределения энергии
взаимодействия электронов с ядром
атома. Последняя имеет вид —а/г,
где
г
—
расстояние электрона до ядра, а
—
постоянная. При подстановке мы получили
бы в распределении множитель ехр(а/гТ),
обращающийся
при г
=
0
в
бесконечность; это означало бы, что в
тепловом равновесии все электроны
должны были бы «упасть» на ядро.
Т—>-0 упругость насыщенного пара всех веществ становится сколь угодно малой, так что заданное конечное количество вещества в заданном конечном объеме не может оставаться при Т—*0 газообразным.
Если же рассмотреть принципиально возможную модель газа, состоящего из взаимно отталкивающихся частиц, то хотя такой газ не будет никогда конденсироваться, все равно при достаточно низких температурах перестанет быть справедливой статистика Больцмана; применение же статистики Ферми или Бозе приводит, как мы увидим ниже, к выражениям, удовлетворяющим теореме Нернста.