
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 32. Термодинамическая теория возмущений
При конкретном вычислении термодинамических величин бывают случаи, когда энергия Е(р, q) тела содержит относительно малые члены, которыми можно в исходном приближении пренебречь. Роль таких малых членов может играть, например, потенциальная энергия частиц тела во внешнем поле (об условиях, позволяющих считать какие-либо члены малыми, см. ниже).
В этих случаях допустима своего рода теория возмущений для вычисления термодинамических величин (R. Peierls, 1932). Покажем сначала, как это должно быть сделано в случае применимости классического распределения Гиббса.
Напишем энергию Е (р, q) .в виде
E(p,q) = E0(p,q) + V(p,q), (32,1)
где V изображает собой малые члены. Для вычисления свободной энергии тела пишем:
е т=)е т dr«Je ^(l-f + ^-jdr, (32,2)
причем в разложении по степеням V здесь и ниже мы ограничиваемся членами второго порядка, имея в виду вычислить поправки лишь первого и второго приближений. Логарифмируя и снова разлагая в ряд, с той же точностью имеем
Г" I 1/2 \ fo-g»(P- Я) . Г п, f.-Др (Р, Я) -1 2
F = Fo + )[V-~)e т dr+_L|jye т drJ f
где F0 обозначает «невозмущенную» свободную энергию, вычисленную при V = 0.
Получившиеся интегралы представляют собой средние значения соответствующих величин, вычисленные с помощью «невозмущенного» распределения Гиббса. Понимая усреднение в этом смысле и замечая, что Р2—У2 = <(У — V)s>, пишем окончательно
F = F0 + V-^r<(V-V)*>. (32,3)
Таким образом, поправка первого приближения к свободной энергии равна просто среднему значению возмущающей энергии V. Поправка же второго приближения всегда отрицательна и определяется средним квадратом отклонения V от своего среднего значения. В частности, если среднее значение V обращается в нуль, то в результате возмущения свободная энергия уменьшается.
Сравнение члена второго порядка с членом первого порядка в (32,3) позволяет выяснить условие применимости изложенного метода возмущений. При этом надо иметь в виду, что как
среднее значение V, так и средний квадрат <(V—V)2> оба, грубо говоря, пропорциональны числу частиц (см. сказанное в § 2 о средних квадратичных флуктуациях термодинамических величин макроскопических тел). Поэтому можно сформулировать искомое условие как требование малости отнесенной к одной частице энергии возмущения по сравнению с Г1).
Произведем теперь аналогичные вычисления для квантового случая. Вместо (32,1) здесь надо писать аналогичное выражение для гамильтониана
н=н0+^.
Согласно квантовой теории возмущений (см. iii, § 38) уровни энергии возмущенной системы, с точностью до поправок второго приближения, определяются выражением
Еа
=
Ек»
+ Vnn
+
£'
JJ}nmL
. (32,4)
где Епт — невозмущенные уровни энергии (по предположению— невырожденные); штрих у знака суммы означает, что должен быть опущен член с т = п. Это выражение надо подставить в формулу
e-F/T = ^e-BnIT п
и произвести такое же разложение, какое было произведено выше. Простое вычисление приводит к следующему результату:
\У„т?и>п
174» С
л
т
Ьп
с™
2Т
л \ л /
где w„ = ехр {(F0—En0))/T\—невозмущенное распределение Гиббса.
Диагональный матричный элемент Vпп есть не что иное, как среднее значение возмущающей энергии V в данном (п-ы) квантовом состоянии. Поэтому сумма
' ппшп—» ля.
п
*)
При разложении подынтегрального
выражения в (32,2) мы, строго говоря,
разлагали по величине V/T,
пропорциональной
числу частиц и потому отнюдь не малой.
Однако логарифмирование и повторное
разложение приводят ко взаимному
сокращению больших членов, в результате
чего получается ряд по степеням малой
величины.
Этим значением определяется поправка первого приближения к свободной энергии—результат, формально совпадающий с полученным выше классическим.
Формулу (32,5) можно переписать в.виде
F
=
F.
+ L'
lVnmFL{W;ZWn)-W<(Vnn-Vnn)*>.
(32,6)
Все члены второго порядка в этом выражении отрицательны (поскольку wm — wn имеет тот же знак, что и Е„т — Таким образом, поправка второго приближения к свободной энергии отрицательна и в квантовом случае.
Как и в классическом случае, условие применимости этого метода заключается в малости энергии возмущения (отнесенной к одной частице) по сравнению с Т. Между тем условие применимости обычной квантовомеханической теории возмущений (дающей выражение (32,4) для Еп) заключается, как известно, в малости матричных элементов возмущения по сравнению с разностями соответствующих уровней энергии; грубо говоря, энергия возмущения должна быть мала по сравнению с разностями тех уровней энергии, между которыми в основном возможны переходы1).
Эти два условия отнюдь не совпадают друг с другом — температура не имеет никакого отношения к уровням энергии тела. Может оказаться, что энергия возмущения мала по сравнению с Г, но в то же время не мала или даже велика по сравнению с существенными разностями уровней энергии. В таких случаях «теория возмущений» для термодинамических величин (т. е. формула (32,6)) будет применима, между тем как теория возмущений для самих уровней энергии (т.е. формула (32,4)) оказывается неприменимой; другими словами, пределы сходимости разложения, представляемого формулой (32,6), могут оказаться шире, чем пределы сходимости разложения (32,4), из которого оно было выведено.
Возможны, конечно, и обратные случаи (при достаточно низких температурах).
Формула (32,6) значительно упрощается, если не только энергия возмущения, но и разности уровней энергии малы по сравнению с Т. Разлагая разность wm — wn в (32,6) по степеням (Е1п0) — Е$)/Т, найдем в этом случае
*)
Это, вообще говоря, переходы, при которых
меняются состояния лишь небольшого
числа частиц тела.
Но по правилу умножения матриц имеем
2' I vnm р+Пп=21 vnm р=2 vnmvmn=(v%n,
т mm
и мы получаем выражение, формально полностью совпадающее с формулой (32,3). Таким образом, в этом случае квантовомеха-ническая формула формально переходит в классическую1).