
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
Глава III
РАСПРЕДЕЛЕНИЕ ГИББСА
§ 28. Распределение Гиббса
Перейдем теперь к поставленной в главе I задаче о нахождении функции распределения для любого макроскопического тела, являющегося малой частью какой-либо большой замкнутой системы (подсистемой). Наиболее удобный и общий способ подхода к решению этой задачи основан на применении ко всей системе микроканонического распределения.
Выделим из замкнутой системы интересующее нас тело и будем рассматривать систему как составленную из двух частей: изданного тела и всей остальной ее области, которую мы будем называть по отношению к телу «средой».
Микроканоническое распределение (6,6) напишется в виде
dw = const • б (Е + Е' — Ew) dY dY'
(28,1)
где Е, dY и £", dY' относятся соответственно к телу и среде, a Ei0) — заданное значение энергии замкнутой системы; этому значению должна быть равна сумма Е + Е' энергий тела и среды.
Нашей целью является нахождение вероятности wn такого состояния всей системы, при котором данное тело находится в некотором определенном квантовом состоянии (с энергией Еп), т. е. в состоянии, описанном микроскопическим образом. Микроскопическим же состоянием среды мы при этом не интересуемся, т. е. будем считать, что она находится в некотором макроскопически описанном состоянии. Пусть АГ' есть статистический вес макроскопического состояния среды; обозначим также посредством АЕ' интервал значений энергии среды, соответствующий интервалу АГ' квантовых состояний в указанном в § 7 смысле.
Искомую вероятность wn мы найдем, заменив в (28,1) dY единицей, положив Е — Еп и проинтегрировав по dY':
Пусть Г'(£') — полное число квантовых состояний среды с энергией, меньшей или равной Е'. Поскольку подынтегральное выражение зависит только от Е', можно перейти к интегрированию по dE', написав:
dE
dl"
Производную заменяем (ср. §7) отношением
Л" es'(£J)
dE'~ АЕ' '
где S' (Е')—энтропия среды как функция ее энергии (функцией £' является, конечно, также и АЕ'). Таким образом,
w,
,, = const. j |fl 6 (£' + Еп-Е«») dE'.
Благодаря наличию б-фуикции интегрирование сводится к замене Е' на £(0)—Еп, и получаем
wn = const- (^)£,= £,o,_£n. (28,2)
Учтем теперь, что вследствие малости тела его энергия Еа мала по сравнению с £(0'. Величина АЕ' относительно очень мало меняется при незначительном изменении £'; поэтому в ней можно просто положить Е' — £(0), после чего она превратится в независящую от Еп постоянную. В экспоненциальном же множителе es' надо разложить S'(Ет — £„) по степеням Е„, сохранив также и линейный член:
d£<»>
dS' (£<»>)
S' (£<°>—£„) = S' (£<0))—£„ -
Но производная от энтропии S' по энергии есть не что иное, как 1/Т, где Т—температура системы (температура тела и среды одинакова, так как система предполагается находящейся в равновесии).
Таким образом, получаем окончательно для wa следующее выражение:
и1я = Лехр(-£?), (28,3)
где А — не зависящая от £„ нормировочная постоянная. Это — одна из важнейших формул статистики; она определяет статистическое распределение любого макроскопического тела, являющегося сравнительно малой частью некоторой большой замкнутой системы. Распределение (28,3) называется распределением Гиббса ила каноническим распределением; оно было открыто Гиббсом (J. W. Gibbs) для классической статистики в 1901 г.
Нормировочная постоянная А определяется условием 2шп~ откуда
4-= 2 е-*-"1. (28,4)
Среднее значение любой физической величины /, характеризующей данное тело, может быть вычислено с помощью распределения Гиббса по формуле
/
=
Z>Jn»=
П^е-Еп/т
• (28,5)
п
В классической статистике выражение, в точности соответствующее формуле (28,3), получается для функции распределения в фазовом пространстве:
р(р, q) = Ае~Е<Р'Ыт, (28,6)
где Е(р, q)—энергия тела как функция его координат и импульсов*). Нормировочная постоянная А определяется условием
^pdpdq=A t\je-EiP'iVTdpdq= 1. (28,7)
На практике часто приходится иметь дело со случаями, когда квазиклассическим является не все микроскопическое движение частиц, а лишь движение, соответствующее части степеней свободы, в то время как по остальным степеням свободы движение является квантовым (так, например, может быть квазиклассическим поступательное движение молекул при квантовом характере внутримолекулярного движения атомов). В таком случае уровни энергии тела можно написать в виде функций от квазиклассических координат и импульсов: En = En(p,q), где п обозначает совокупность квантовых чисел, определяющих «квантовую часть» движения, для которого значения р и q играют роль параметров. Формула распределения Гиббса напишется тогда в виде
dw„(P, q) = Ae-EntP-MTdpK]1dqK]I, (28,8)
где dpKadqK1I—произведение дифференциалов «квазиклассических» координат и импульсов.
*)
Во избежание недоразумений лишний раз
напомним, что wn
(или
р) являются монотонными функциями
энергии и отнюдь не должны иметь
максимума при Е
=
Е.
Острый
максимум при Е
=
Е
имеет
функция распределения по энергии,
получающаяся умножением wn
на
dY
(E)/dE.
Возможность применения (в указанном смысле) распределения Гиббса к замкнутым телам видна также и из того, что оно по существу очень слабо отличается от микроканонического (и в то же время несравненно удобнее для проведения конкретных расчетов). Действительно, микроканоническое распределение эквива,-лентно, грубо говоря, признанию равновероятными всех микросостояний тела, отвечающих заданному значению его энергии. Каноническое же распределение «размазано» по некоторому интервалу значений энергии, ширина которого (порядка величины средней флуктуации энергии), однако, для макроскопического тела ничтожно мала.