
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 27. Термодинамические соотношения в релятивистской области
Релятивистская механика приводит к ряду изменений в обычных термодинамических соотношениях. Мы рассмотрим здесь те из этих изменений, которые представляют наибольший интерес.
Если микроскопическое движение частиц, составляющих тело, становится релятивистским, то общие термодинамические соотношения не изменяются, но возникает важное неравенство между давлением и энергией тела
р<4г- (ад
где Е—энергия тела, включающая в себя энергию покоя входящих в его состав частиц1).
Принципиальный интерес представляют изменения, вносимые общей теорией относительности в условиях теплового равновесия при учете создаваемого самим телом гравитационного поля. Рассмотрим неподвижное макроскопическое тело; его гравитационное поле будет, разумеется, постоянным. В постоянном гравитационном поле надо отличать сохраняющуюся энергию Е0 какой-либо малой части тела от энергии Е, измеренной наблюдателем, находящимся в данном месте; эти две величины связаны друг с другом соотношением
Ea = EVg^,
х)
См. II,
§ 35. Напомним, однако, что общего
доказательства этого неравенства,
пригодного для всех существующих в
природе (не только электромагнитных)
типов взаимодействия между частицами,
в настоящее время не существует.
Для вывода количественного соотношения замечаем, что энтропия по существу своего определения зависит исключительно от внутреннего состояния тела и потому не изменяется при появлении гравитационного поля (в той мере, в которой это поле не влияет на внутренние свойства тела, —условие, которое фактически всегда выполнено). Поэтому производная по энтропии от сохраняющейся энергии Е„ будет равна T\f gm и, таким образом, одно из условий теплового равновесия требует постоянства вдоль тела величины
TVlfa = const. (27,2)
Аналогичным образом видоизменяется второе условие равновесия— постоянство химического потенциала. Химический потенциал определяется как производная от энергии по числу частиц. Поскольку число частиц, разумеется, гравитационным полем не меняется, то для химического потенциала, измеренного в каждой данной точке, получаем такое же соотношение, как и для температуры:
pKi^ = const. (27,3)
Заметим, что соотношения (27,2—3) можно написать в виде
T = const~, ii = consb-^, (27,4)
позволяющем рассматривать тело не только в той системе отсчета, в которой оно неподвижно, но и в таких, в которых оно движется (вращается как целое). При этом производная dx°/ds должна браться по мировой линии, описываемой данной точкой тела.
В слабом (ньютоновском) гравитационном поле g00 = 1 -f-2cp/c2, где ср — гравитационный потенциал (см. II, § 87). Подставляя это выражение в (27,2) и извлекая корень, найдем в том же приближении
Г = const- (l—J). (27,5)
Имея в виду, что ср < 0, находим, что при равновесии температура выше в тех местах тела, в которых | ср | больше, т. е. в глубине тела. При предельном переходе к нерелятивистской механике (с—► оо) (27,5) переходит, как и следовало, в Т = const.
Аналогичным образом можно преобразовать условие (27,3), причем надо иметь в виду, что релятивистский химический потенциал при предельном переходе к классической механике переходит не непосредственно в обычное (нерелятивистское) выражение для химического потенциала в отсутствие поля, которое мы обозначим здесь посредством р,0, а в p0-f-mc2, где ж2—энергия покоя
отдельной частицы тела. Поэтому имеем
И Vffa ~ О*, +mc2) (l wц, + mc% + m<p,
так что условие (27,3) переходит в
(х0 + тф = const,
что совпадает, как и следовало, с (25,2).
Наконец, укажем полезное соотношение, являющееся непосредственным следствием условий (27,2) и (27,3). Разделив одно на другое, найдем, что ц/Г = const, откуда следует: d\i/\i = dT/T. С другой стороны, согласно (24,12), при постоянном (равном единице) объеме имеем
dP = SdT + Ndli,
где S, N—энтропия и число частиц единицы объема тела. Подставляя сюда dT — {Tl\i)d\i и замечая, что цЫ -\-ST ^Ф + БТ= = е-{-Р (е—энергия, отнесенная к единице объема), найдем искомое соотношение1):
J) В нерелятивистском случае, положив р, я mc2, е « рс2 ^> Р (р—плотность), получим d\i = vdP (v = mjp—объем, отнесенный к одной частице), как и должно было быть при Т= const.