
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 25. Равновесие тела во внешнем поле
Рассмотрим тело, находящееся в постоянном (во времени) внешнем поле. Различные части тела находятся при этом в различных условиях, поэтому тело будет неоднородным. Одним из условий равновесия такого тела является по-прежнему постоянство температуры вдоль тела; давление же будет теперь различно в различных его точках.
Для вывода второго условия равновесия выделим из тела два определенных соприкасающихся объема и потребуем максимальности их энтропии S = S1 + Sg при неизменном состоянии остальных частей тела. Одно из необходимых условий максимума заключается в равенстве нулю производной dS/dN^ Поскольку общее число частиц Л^ + #2 в двух данных частях тела рассматривается как постоянное, имеем
dS _ dSt dS2 dN2 _ dSt _ dS2 _ fl
Но из равенства dE==TdS-\~ndN, написанного в виде
dS = ~—^dN,
мы видим, что производная -Ц, (при постоянных ЕиТ) равна — и./7\
Таким образом, имеем: ii1/T1 = n!s/Ta. Но при равновесии Tt — Ttt так что и р,1 = (А2. Мы приходим, следовательно, к результату, что при равновесии во внешнем поле, кроме постоянства температуры должно соблюдаться условие
ц = const, (25,1)
т. е. химические потенциалы всех частей тела должны быть равны друг другу. При этом химический потенциал каждой части есть функция ее температуры и давления, а также параметров, определяющих внешнее поле. Если поле отсутствует, то из постоянства (I и Г автоматически следует и постоянство давления.
В поле тяготения потенциальная энергия молекулы и есть функция только координат х, у, z ее центра тяжести (и не зависит от расположения атомов внутри молекулы). В этом случае изменение термодинамических величин тела сводится к добавлению к его энергии потенциальной энергии молекул в поле. В частности, химический потенциал (термодинамический потенциал, отнесенный к одной молекуле) примет вид р. = (А0 -\-и(х, у, z), где fi0 (Р, Т) есть химический потенциал в отсутствие поля. Таким образом, условие равновесия в поле тяготения можно написать в виде
ц0 (Р, Т) + и (х, у, z) = const. (25,2)
В частности, в однородном поле тяжести u — tngz (m — масса молекулы, g— ускорение силы тяжести, z — вертикальная координата). Дифференцируя равенство (25,2) по координате z при постоянной температуре, получим
vdP = —mgdz,
где v = (dnJdP)T — удельный объем. При небольших изменениях давления v можно считать постоянным. Вводя плотность p = m/v и интегрируя, получим
Р — const—pgz,
т. е. обычную формулу для гидростатического давления в несжимаемой жидкости.
§ 26. Вращающиеся тела
В состоянии теплового равновесия возможно, как мы видели в § 10, лишь равномерное поступательное движение и равномерное вращение тела как целого. Равномерное поступательное движение никакого особого рассмотрения не требует, так как согласно принципу относительности Галилея оно никак не сказывается на механических, а потому и термодинамических свойствах тела, и его термодинамические величины меняются лишь в том смысле, что к энергии добавляется кинетическая энергия тела.
Рассмотрим тело, равномерно вращающееся вокруг неподвижной оси с угловой скоростью Q. Пусть Е(р, q) есть энергия тела в неподвижной системе координат, a E'(p,q)—энергия в системе координат, вращающейся вместе с телом. Как известно из механики, эти величины связаны друг с другом соотношением
E'{p,q) = E(p,q)-im.(p,q), (26,1)
где М(р, q)—момент импульса тела1).
Таким образом, энергия Е' (р, q) зависит, как от параметра, от угловой скорости Q, причем
Усредняя это равенство по статистическому распределению и воспользовавшись формулой (11,3), получим
дЕ' Л =—М, (26,2)
да s
где Е' — Е'(р, q), М = М(р, q)—средние (термодинамические) энергия и момент импульса тела.
На основании этого соотношения мы можем написать дифференциал энергии вращающегося тела при заданном объеме в виде
dE'= Т dS — f\du. (26,3)
Для свободной энергии F' = E'—TS (во вращающейся системе координат) соответственно имеем
dF' = —5 dT — mdQ. (26,4)
Усредняя равенство (26,1), получим
£' = £—МЙ. (26,5)
Дифференцируя это равенство и подставляя (26,3), получим дифференциал энергии в неподвижной системе координат
dE = TdS + Qdtl. (26,6)
Для свободной энергии F = E—TS соответственно имеем
dF=—SdT+Qdm. (26,7)
Таким образом, в этих соотношениях независимой переменной
х) См. I, § 39. Хотя произведенный там вывод формулы (39,13) основан на классической механике, но в квантовой теории в точности те же соотношения справедливы для операторов соответствующих величин. Поэтому все выводимые ниже термодинамические соотношения не зависят от того, какой механикой описывается движение частиц тела.
является
не угловая скорость, а момент импульса,
причем
Как известно из механики, равномерное вращение в известном смысле эквивалентно появлению двух силовых полей: поля центробежных сил и поля кориолисовых сил. Центробежные силы пропорциональны размерам тела (они содержат расстояние до оси вращения); силы же Кориолиса от размеров тела не зависят вовсе. Благодаря этому обстоятельству влияние последних на термодинамические свойства вращающегося макроскопического тела совершенно ничтожно по сравнению с влиянием первых, и ими обычно можно полностью пренебречь1). Поэтому условие теплового равновесия вращающегося тела получится просто подстановкой в (25,2) в качестве и (х, у, г) центробежной энергии частиц:
MP, T)-^^ = const, (26,9)
где Ро—химический потенциал покоящегося тела, т—масса молекулы, г — расстояние до оси вращения. По той же причине полную энергию вращающегося тела Е можно написать в виде суммы его внутренней энергии (которую мы обозначим здесь посредством Ет) и кинетической энергии вращения:
Е = ЕВК + ^, (26,10)
где /—момент инерции тела относительно оси вращения. Надо иметь в виду, что вращение, вообще говоря, меняет распределение масс в теле, поэтому момент инерции и внутренняя энергия тела сами, вообще говоря, зависят от Q (или от М). Лишь при достаточно медленном вращении эти величины можно считать постоянными, не зависящими от Q.
Рассмотрим изолированное равномерно вращающееся твердое тело с заданным распределением масс в нем. Поскольку энтропия тела есть функция его внутренней энергии, то в данном случае
s-s[b-$).
*)
Можно показать, что в
классической
статистике кориолисовы силы вообще не
влияют на статистические свойства
тела—см. § 34.