
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 23. Теорема Нернста
Тот факт, что теплоемкость Cv положительна, означает, что энергия есть монотонно возрастающая функция температуры. Напротив, при падении температуры энергия монотонно уменьшается, и, следовательно, при наименьшей возможной температуре, т. е. при абсолютном нуле, тело должно находиться в состоянии с наименьшей возможной энергией. Если рассматривать энергию тела как сумму энергий частей, на которые можно мысленно его разделить, то можно утверждать, что и каждая из этих частей будет находиться в состоянии с наименьшей энергией; ясно, что минимальному значению суммы должны соответствовать и минимальные значения всех ее слагаемых.
Таким образом, при абсолютном нуле любая часть тела должна находиться в одном определенном—основном — квантовом состоянии. Другими словами, статистические веса этих частей равны единице, а потому равно единице и их произведение, т. е. статистический вес макроскопического состояния тела в целом. Энтропия же тела—логарифм его статистического веса — равна, следовательно, нулю.
Поэтому мы приходим к следующему важному заключению: энтропия всякого тела обращается в нуль при абсолютном нуле
температуры (так называемая теорема Нернста (W. Nernst, 1906)г).
Подчеркнем, что эта теорема является следствием квантовой статистики, в которой существенную роль играет понятие о дискретных квантовых состояниях. Она не может быть доказана в чисто классической статистике, в которой энтропия вообще определяется лишь с точностью до произвольной аддитивной постоянной (см. § 7).
Теорема Нернста позволяет сделать заключения и о поведении некоторых других термодинамических величин при 7-»-0. Так, легко видеть, что при 7 = 0 обращаются в нуль теплоемкости — как Ср, так и Cv:
Cp = Cv = 0 при 7 = 0. (23,1)
Это следует непосредственно из определения теплоемкости, написанного в виде
Р rpdS dS
Ь~ df~dhTf-
При Т->0 имеем: lnT-s—оо, а поскольку S стремится к постоянному пределу (к нулю), ясно, что написанная производная стремится к нулю.
Далее, обращается в нуль коэффициент теплового расширения
{w)p = 0 ПРИ г=0- <23'2)
Действительно, эта производная равна производной — (dS/dP)T
(см. (16,4)), обращающейся при 7 = 0 в нуль, поскольку S = 0 при 7 = 0 и произвольном давлении. Аналогично убеждаемся в том, что и
(§)v = 0 при 7 = 0. (23,3)
Обычно энтропия обращается при 7->0 в нуль по степенному закону, т. е. как S = aTn, где а—функция давления или объема. Очевидно, что в этом случае теплоемкости и величины (dV/dT)P, (dP/dT)v обращаются в нуль по тому же закону (с тем же п).
Наконец, можно видеть, что разность Ср—С„ обращается в нуль быстрее, чем самые теплоемкости, т. е.
*)
Во избежании недоразумений подчеркнем,
что речь идет о
стремлении
температуры к нулю при каких-либо в
остальном
неизменных условиях—скажем, при
постоянном объеме или постоянном
давлении. Если же, например, стремить
к нулю температуру газа одновременно
с неорганиченным уменьшением его
плотности, то энтропия может и не
обратиться в нуль.
Действительно, пусть при Т-+0 энтропия стремится к нулю по законуS ~ Т". Из формулы (16,9) видно, чтотогда Cp—Cv ~ Т2п+1, так что (C„—Cl)/Cp^Tn+1 (следует иметь в виду, что сжимаемость (дУ/дР)т остается при Т = 0, вообще говоря, отличной от нуля конечной величиной).
Если известна теплоемкость тела во всем диапазоне изменения температуры, то энтропия может быть вычислена путем интегрирования, причем теорема Нернста позволяет установить значение постоянной интегрирования. Так, зависимость энтропии от температуры при заданном значении давления определится по формуле
7С
S = §-f-dT. (23,5)
о
Для тепловой функции аналогичная формула гласит:
т
W = W.+ \cpdT, (23,6)
о
где W0—значение тепловой функции при Г —0. Для термодинамического потенциала Ф = № — TS соответственно имеем
т т с
Q> = W0 + §CpdT—T§-fidT. (23,7)
о о