
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 21. Термодинамические неравенства
Получая условия теплового равновесия из условия максимальности энтропии, мы до сих пор рассматривали лишь ее первые производные. Требуя обращения в нуль производных по энергии и объему, мы получили (§§ 9, 12) в качестве условий равновесия условия равенства температур и давлений во всех частях тела. Однако равенство нулю первых производных является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Выяснение же достаточных условий максимума требует, как известно, исследования второго дифференциала функции.
1)
Что касается зависимости энтропии от
импульсов макроскопического движения,
то
для
нее
нами
уже
были исследованы условия,
налагаемые как на
первые, так и на вторые производные (§
10), в результате чего были найдены
требование отсутствия внутренних
макроскопических движений в'теле и
требование положительности
температуры.
E-T0S + P0V,
где Е, S, V—энергия, энтропия и объем данной части тела, а Т9, Ра—температура и давление среды, т. е. остальных частей тела. Т0 и Р0 являются, очевидно, в то же время температурой и давлением рассматриваемой части в состоянии равновесия.
Таким образом, при всяком малом отклонении от равновесия изменение величины Е—T0S + P0V должно быть положительно, т. е.
6E — TobS + P08V>0. (21,1)
Другими словами, можно сказать, что минимальная работа, которую надо затратить для того, чтобы перевести данную часть тела из состояния равновесия в любое другое близкое состояние, должна быть положительна.
В дальнейшем во всех коэффициентах, стоящих при отклонениях термодинамических величин от их равновесных значений, будут подразумеваться равновесные значения, соответственно чему индексы нуль будут опускаться.
Разлагая 8Е в ряд (рассматривая Е как функцию S и V"), получим с точностью до членов второго порядка
Но дЕ/dS — T, dE/dV = — Р, так что члены первого порядка здесь равны T8S—P8V и при подстановке 8Е в (21,1) сокращаются. Таким образом, получаем условие
Ш6S2+2 шът6S бУ + -Щ-ьу2 > °- <21 -2)
Как известно, для того чтобы такое неравенство имело место при произвольных 65 и 8V, необходимо соблюдение двух условий1):
g->0, (21,3)
dS2 dV*
Поскольку
dS* ~\dS )v~ Cv
то условие (21,3) приобретает вид TICV~>Q или
Cv>0, (21,5)
т. е. теплоемкость при постоянном объеме всегда положительна.
х) Особый случай, когда в (21,4) стоит знак равенства, будет рассмотрен в дальнейшем, в § 152.
§ 21]
термодинамические неравенства
81
Условие (21,4) можно написать в виде якобиана
d[{ds)v' {dv)s] д_
d(S,V) ~ d(S,V)
Переходя к переменным Т и V, имеем
д(Т, Р) [дР\
д (Г, Р) _ д(Т,У) _ V дУ )т_ Т ( дР \
d(S,V) - д(S,V) - (_dS_\ ~ Cv { dV )т
д(Т,У) \дТ)у
Поскольку Cv > 0, это равносильно условию
(ж)г<°.
(21,6)
т. е. увеличение объема при постоянной температуре всегда сопровождается уменьшением давления.
Условия (21,5) и (21,6) называются термодинамическими неравенствами. Состояния, в которых эти условия не выполнены, неустойчивы и в природе существовать не могут.
В § 16 было уже отмечено, что в силу неравенства (21,6) и формулы (16,10) всегда Cp>Cv. Ввиду (21,5) можно поэтому заключить, что всегда и
возрастающая функция температуры при постоянном объеме, а тепловая функция—такая же функция температуры, но при постоянном давлении. Энтропия же монотонно возрастает с температурой как при постоянном объеме, так и при постоянном давлении.
Условия (21,5—6), выведенные для любой малой части тела, справедливы, конечно, и для всего тела в целом, так как в равновесии температуры и давления всех частей равны друг другу. При этом предполагается, что тело однородно (только такие тела мы пока и рассматриваем). Подчеркнем, что выполнение условий (21,5 — 6) связано именно с однородностью тела. Можно, например, рассмотреть тело, частицы которого удерживаются вместе гравитационными силами; такое тело будет, очевидно, неоднородным,— оно будет уплотнено по направлению к центру. Для такого тела в целом теплоемкость может быть и меньше нуля, т. е. тело может нагреваться по мере уменьшения энергии. Заметим, что это не противоречит тому, что теплоемкость положительна для каждой малой части тела, так как энергия всего тела в таких условиях не равна сумме энергий его частей—существует еще дополнительная энергия гравитационного взаимодействия между этими частями.
Выведенные нами неравенства являются условиями равновесия. Их выполнение, однако, еще недостаточно для того, чтобы равновесие было полностью устойчивым.
Именно, могут существовать такие состояния, при бесконечно малом отклонении от которых энтропия уменьшается, так что тело вслед за этим возвращается в исходное состояние, в то время как при некотором конечном отклонении энтропия может оказаться большей, чем в исходном состоянии. При таком конечном отклонении тело не вернется в исходное состояние, а наоборот, будет стремиться перейти в некоторое другое состояние равновесия, соответствующее максимуму энтропии, большему, чем максимум энтропии в первоначальном состоянии. Соответственно этой возможности среди состояний равновесия надо различать так называемые метастабильные и стабильные состояния. Если тело находится в метастабильном состоянии, то при достаточном отклонении от него тело может не вернуться в исходное состояние. Хотя метастабильное состояние в известных пределах устойчиво, но рано или поздно тело все равно перейдет из него в другое, стабильное состояние. Последнее соответствует наибольшему из всех возможных максимумов энтропии; выведенное из такого состояния тело рано или поздно вернется в него обратно.