
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 19. Максимальная работа
Рассмотрим теплоизолированную систему, состоящую из нескольких тел, не находящихся друг с другом в тепловом равновесии. В течение процесса установления равновесия система может совершать работу (над какими-либо внешними объектами). Переход в равновесие может, однако, совершаться различным образом, причем будут различными и окончательные равновесные состояния системы; в частности, будут различными ее энергия и энтропия.
Соответственно этому полная работа, которую можно получить от неравновесной системы, будет зависеть от способа установления равновесия, и можно поставить вопрос о том, каким образом должен произойти переход в равновесное состояние, для того чтобы система произвела наибольшую возможную работу. При этом мы интересуемся именно той работой, которая производится за счет неравновесности системы; это значит, что надо исключить работу, которая могла бы быть произведена за счет общего расширения системы,— такая работа могла бы производиться и системой, находящейся самой по себе в равновесии. Соответственно этому будем предполагать, что в результате процесса общий объем системы остается неизменным (хотя и может меняться в течение процесса).
Пусть первоначальная энергия системы есть Е0, а энергия в состоянии равновесия как функция от энтропии системы в этом состоянии Е (5). Вследствие теплоизолированное™ системы произведенная ею работа равна просто изменению энергии:
\R\ = E0-E(S)
(мы пишем | R |, так как по принятому нами условию R < 0, если работа производится самой системой).
Дифференцируя | R | по энтропии S конечного состояния, имеем
где Т—температура конечного состояния; производная берется при заданном значении объема системы в конечном состоянии (совпадающем с его начальной величиной). Мы видим, что эта производная отрицательна, т. е. | R | уменьшается с увеличением S. Но энтропия теплоизолированной системы не может убывать. Поэтому наибольшее возможное | R | будет достигнуто, если S останется в течение всего процесса неизменной.
Таким образом, мы приходим к выводу, что система производит максимальную работу в том случае, когда ее энтропия остается постоянной, т. е. переход в равновесное состояние совершается обратимым образом.
Определим максимальную работу, которая может быть произведена при обмене малым количеством энергии между двумя
телами с различными температурами 7\ и Т2; пусть Т2 > 7\. Прежде всего подчеркнем, что если бы передача энергии происходила непосредственно при соприкосновении обоих тел, то никакой работы вообще не было бы произведено. Процесс был бы необратимым (энтропия обоих тел увеличилась бы на б£(1/Т1—1/Г2), где 8Е — перенесенное количество энергии).
Поэтому для того, чтобы осуществить обратимый перенос энергии и, соответственно, получить максимальную работу, необходимо ввести в систему еще одно вспомогательное тело (рабочее тело), совершающее определенный обратимый круговой процесс. Процесс этот должен осуществляться таким образом, чтобы тела, между которыми происходит непосредственный обмен энергией, находились при одинаковой температуре. Именно, рабочее тело при температуре Т2 приводится в соприкосновение с телом с температурой Т2 и изотермически получает от него определенную энергию. Затем оно адиабатически охлаждается до температуры 7\, отдает при этой температуре энергию телу с температурой 7\ и, наконец, адиабатически возвращается в первоначальное состояние. При расширениях, связанных с этим процессом, рабочее тело производит работу над внешними объектами. Описанный круговой процесс называется циклом Карт.
Переходя к вычислению получающейся максимальной работы, замечаем, что рабочее тело можно при этом не рассматривать, поскольку оно возвращается в результате процесса в исходное состояние. Пусть более нагретое второе тело теряет количество энергии —8Е2 =— T28S2, а первое получает при этом энергию 8El = T18Sv Ввиду обратимости процесса сумма энтропии обоих тел остается постоянной, т. е. 8SX =— 8S2. Произведенная работа равна уменьшению полной энергии обоих тел, т. е.
I S# Imax = - 8Е1-8Е2 = - T.8S, - T28S2 = -{Tt- 7\) 6S2,
или
|WU = ^^i|S£2|. (19,1)
Отношение совершенной работы к количеству затраченной энергии называют коэффициентом полезного действия ц. Максимальный коэффициент полезного действия при переходе энергии от более нагретого к менее нагретому телу равен, согласно (19,1),
4».x=z:t1^. (ад
* 2
Более удобной величиной является коэффициент использования п, определяемый как отношение произведенной работы к максимальной работе, которая может быть получена в данных условиях. Очевидно, что n = r\/r\max.