
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 156. Поверхностное давление
Условие равенства давлений двух соприкасающихся фаз мы обосновывали (§ 12) равенством сил, действующих на поверхности раздела со стороны обеих фаз. При этом, как и везде, пренебре-гались поверхностные эффекты. Между тем ясно, что если поверхность раздела не плоская, то при ее смещении меняется, вообще говоря, ее площадь, а потому и поверхностная энергия. Другими словами, наличие искривленной поверхности раздела между фазами приводит к появлению дополнительных сил, и в результате давления обеих фаз уже не будут одинаковыми; их разность называют поверхностным давлением.
Таким образом, условия равновесия требуют теперь постоянства вдоль системы лишь температуры и химического потенциала. При заданных значениях этих величин, а также и полного объема системы должен быть минимальным (по отношению к смещению поверхности раздела) термодинамический потенциал Q.
Рассмотрим две изотропные фазы (две жидкости или жидкость и пар). Имея в виду лишь термодинамические аспекты вопроса, будем считать, что одна из фаз (фаза 1) представляет собой шар, погруженный в другую фазу. Тогда давления постоянны вдоль каждой из фаз и полный термодинамический потенциал Q системы дается формулой
Q = -P1V1-JP2l/3 + «§, (156,1)
где первые два члена составляют объемную часть потенциала, а индексы 1 и 2 относятся к двум фазам.
Давления двух фаз, находящихся в равновесии друг с другом, удовлетворяют уравнениям цх (Plt Т) = ц2 (Р2, Т) = р, где р — общее значение обоих химических потенциалов. Поэтому при постоянных р, и Т надо считать постоянными также и Р1У Р2 (а также коэффициент поверхностного натяжения а). Учитывая постоянство суммы Vj+Vj, находим условие минимальности Q в виде
dQ = — (P1 — P1)dV1 + ad§ = Q.
Наконец, подставив сюда У1 = -у-/'3, § = 4яг2 (где г — радиус шара), получим искомую формулу
Р-Р^^. (156,2)
В случае плоской поверхности раздела (г ~* оо) оба давления, как и следовало ожидать, совпадают.
Формула (156,2) определяет лишь разность давлений в обеих фазах; вычислим теперь каждое из них в отдельности.
Давления Рг и Р2 удовлетворяют уравнению рх (Рх, Т) = = р2(Р2, Т). Общее же давление обеих фаз при плоской поверхности раздела между ними (обозначим его Р0) определяется при той же температуре из соотношения МЛ> Т) = р2(Р0, Т). Вычтя второе равенство почленно из первого, имеем
МЛ, Л-МЛ. т) = МЛ. Л-МЛ, т). (156,3)
Предполагая разности
бя1 = л-Л. 6Л = Л-Л
относительно малыми и разлагая по ним обе стороны равенства (156,3), находим
о1б/>1 = о,6Р„ (156,4)
где vlt v2—молекулярные объемы (см. (24,12)). Присоединив сюда формулу (156,2), переписанную в виде 6РХ—6Р2 = 2а/г, найдем искомые 6РХ и 6Р2 в виде
gр 2a_vL_ 6р 2a_£i_ (156 5)
Для капли жидкости в паре имеем v,<^v2\ рассматривая пар как идеальный газ, имеем v2 = T/P2 & Т/Р0 и в результате находим
оРж«, 6РГ = ^Р0 (156,6)
(для ясности пишем индексы «ж» и «г» вместо 1 и 2). Мы видим, что давление пара над каплей превышает давление насыщенного пара над плоской поверхностью жидкости, увеличиваясь с уменьшением радиуса капли.
При достаточно малых размерах капли, когда 6Pr/P„ уже не мало, формулы (156,6) становятся непригодными, так как ввиду сильной зависимости объема пара от давления недопустимо произведенное при переходе от (156,3) к (156,4) разложение. Для жидкости ввиду ее малой сжимаемости влияние изменения давления незначительно и левую сторону уравнения (156,3) можно по-преж-
нему
заменить на иж8Рж.
В правой же стороне подставляем
химический потенциал пара в виде р
=
Т In
Pr-f
%(Т)
и
находим
ы-т;-2-7г- (156>7)
Для пузырька пара в жидкости аналогичным образом получаются те же формулы (156,6—7) с обратными знаками в них.