
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 131. Кристаллические классы
В целом ряде явлений, которые можно назвать макроскопическими, кристалл ведет себя как однородное сплошное тело. Макроскопические свойства кристалла зависят только от направления в нем. Так, особенности прохождения света через кристалл зависят только от направления луча света; тепловое расширение кристалла происходит, вообще говоря, различно по разным направлениям; наконец, упругие деформации кристалла под влиянием тех или иных внешних сил также зависят от направлений.
С другой стороны, симметрия кристаллов приводит к эквивалентности различных направлении в нем. Вдоль этих эквивалентных направлений все макроскопические свойства кристалла будут в точности одинаковыми. Мы можем, следовательно, сказать, что макроскопические свойства кристалла определяются симметрией направлений в нем. Если, например, кристалл обладает центром симметрии, то всякому направлению в нем будет эквивалентно прямо противоположное.
Трансляционная симметрия решетки не приводит к эквивалентности каких-либо направлений —параллельные переносы вообще не меняют направлений. По этой же причине для симметрии направлений несущественно различие между винтовыми и простыми осями симметрии или между простыми плоскостями симметрии и плоскостями зеркального скольжения.
Таким образом, симметрия направлений, а потому и макроскопических свойств кристалла определяется совокупностью его осей и плоскостей симметрии, причем винтовые оси и плоскости скольжения надо рассматривать как простые оси и плоскости. Такие совокупности элементов симметрии называются кристаллическими классами.
Как мы уже знаем, реальный кристалл можно рассматривать как совокупность нескольких решеток Бравэ одинакового типа, вдвинутых друг в друга. Благодаря такому наложению решеток Бравэ симметрия реального кристалла, вообще говоря, отличается от симметрии соответствующей решетки Бравэ.
В частности, совокупность элементов симметрии класса данного кристалла отличается, вообще говоря, от его системы. Очевидно, что присоединение к решетке Бравэ новых узлов может привести только к исчезновению некоторых из осей или плоскостей симметрии, но не к появлению новых. Поэтому кристаллический класс содержит меньше—или в крайнем случае столько же — элементов симметрии, чем соответствующая ему система, т. е. совокупность осей и плоскостей симметрии решетки Бравэ данного кристалла.
Из сказанного вытекает способ нахождения всех классов, относящихся к данной системе. Для этого надо найти все точечные группы, содержащие все или только некоторые из элементов симметрии системы. При этом, однако, может оказаться, что какая-либо из получающихся таким образом точечных групп состоит из элементов симметрии, содержащихся не только в одной, но в нескольких системах. Так, мы видели в предыдущем параграфе, что центром симметрии обладают все решетки Бравэ. Поэтому точечная группа С,- содержится во всех системах. Тем не менее распределение кристаллических классов по системам оказывается обычно с физической точки зрения однозначным. Именно, каждый класс должен быть отнесен к наименее симметричной из всех тех систем, в которых он содержится. Так, класс С, должен быть отнесен к триклинной системе, не обладающей' никакими другими элементами симметрии, кроме центра инверсии. При таком способе распределения классов кристалл, обладающий некоторой решеткой Бравэ, никогда не будет относиться к классу, для осуществления которого достаточной была бы решетка Бравэ более низкой системы (за одним только исключением—см. ниже).
Необходимость выполнения этого условия очевидна с физической точки зрения. Действительно, физически крайне невероятно, чтобы атомы кристалла, относящиеся к его решетке Бравэ, расположились более симметричным образом, чем этого требует симметрия кристалла. Более того, если бы даже такое расположение случайно осуществилось, то достаточно было бы любого, даже слабого, внешнего воздействия (скажем, нагревания), чтобы это расположение, как не связанное необходимым образом с симметрией кристалла, нарушилось бы. Например, если бы кристалл, относящийся к классу, для осуществления кото
рого была бы достаточна тетрагональная система, обладал кубической решеткой Бравэ, то уже незначительное воздействие оказалось бы способным удлинить или укоротить одно из ребер кубической ячейки, превратив ее в прямую призму с квадратным основанием.
Из этого примера видно, что существенную роль играет то обстоятельство, что решетка Бравэ высшей системы может быть переведена в решетку низшей системы уже посредством сколь угодно малой ее деформации. Есть, однако, одно исключение, когда такое превращение невозможно. Именно, гексагональная решетка Бравэ никакой бесконечно малой деформацией не может быть переведена в решетку более низкой по симметрии ромбоэдрической системы; действительно, из рис. 58 видно, что для превращения гексагональной решетки в ромбоэдрическую необходимо переместить узлы в чередующихся слоях на конечную величину — из вершин в центры треугольников. Это приводит к тому, что все классы ромбоэдрической системы осуществляются как с гексагональной, так и с ромбоэдрической решетками Бравэ1).
Классы
Триклинная
Моноклинная
Ромбическая
Тетрагональная Ромбоэдрическая Гексагональная Кубическая
Система
В каждом из написанных здесь рядов классов последний является наиболее симметричным и содержит все элементы симметрии соответствующей системы. Классы, симметрия которых совпадает с симметрией системы, называются голоэдрическими. Классы, обладающие числом различных преобразований симметрии (поворотов и отражений, включая в их число тождественное
*) Кристаллы ромбоэдрических классов с гексагональной решеткой Бравэ принято относить к ромбоэдрической системе.
преобразование), вдвое и вчетверо меньшим, чем у голоэдериче-ского класса, называются соответственно геми- и тетартоэдри-ческими. Так, в кубической системе класс Oh является голоэдрическим, классы О, ТА, Та — гемиэдрическими, а класс Т—тетар-тоэдрическим.