
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 129. Решетка Бравэ
Трансляционные периоды решетки можно изображать векторами а, направленными вдоль соответствующего параллельного переноса и по величине равными длине переноса. Кристаллическая решетка обладает бесконечным множеством различных трансляционных периодов. Однако не все эти периоды независимы друг от друга. Всегда можно выбрать в качестве основ-
ных три (соответственно числу измерений пространства) периода, не лежащих в одной плоскости. Тогда всякий другой период можно будет представить в виде геометрической суммы трех векторов, из которых каждый является целым кратным одного из основных периодов. Если основные периоды обозначать посредством а1( а2, а3, то произвольный период а будет иметь вид
а = и1а1 + п2а2+л3а3, (129,1)
где nlt л2, п3—любые целые положительные или отрицательные числа, включая нуль.
Выбор основных периодов отнюдь не однозначен. Напротив, их можно выбрать бесчисленным множеством способов. Пусть а1( а2, а3—основные периоды; введем вместо них другие периоды &i, а2, а3 согласно формулам
а*' = 2««а* (», А=1, 2, 3), (129,2)
к
где a,-ft — некоторые целые числа. Если новые периоды а, также являются основными, то, в частности, прежние периоды а,- должны выражаться через а,- в виде линейных функций с целыми коэффициентами; тогда и всякий другой период решетки сможет быть выражен через а,'. Другими словами, если выразить из (129,2) а,- через а(', то мы должны получить формулы типа a, = 2p\ftafe опять с целыми B,ft. Но, как известно, определитель равен обратной величине определителя \aik\. Поскольку оба должны быть целыми, отсюда следует, что необходимым и достаточным условием того, чтобы л\ были основными периодами, является равенство
К*| = ±1. (129,3)
Выберем какой-нибудь из узлов решетки и отложим от него три основных периода. Построенный на этих трех векторах параллелепипед называется элементарной ячейкой решетки. Вся решетка может быть тогда представлена в виде совокупности таких правильно уложенных параллелепипедов. Все элементарные ячейки в точности одинаковы по своим свойствам; они имеют одинаковую форму и объем, и в каждой из них находится одинаковое число одинаково расположенных атомов каждого рода.
Во всех вершинах элементарных ячеек находятся, очевидно, одинаковые атомы. Все эти вершины представляют собой, другими словами, эквивалентные узлы, причем каждый из них может быть совмещен с любым другим посредством параллельного переноса на один из периодов решетки. Совокупность всех таких эквивалентных узлов, которые могут быть совмещены друг с другом путем параллельного переноса, образует так называемую решетку Бравэ кристалла. Очевидно, что решетка Бравэ не включает в себя всех вообще узлов кристаллической решетки. Больше того, она даже не включает в себя, вообще говоря, всех эквивалентных узлов, так как в решетке могут существовать такие эквивалентные узлы, которые совмещаются друг с другом только при преобразованиях, содержащих повороты или отражения.
Решетку Бравэ можно построить, выделив какой-нибудь из узлов кристаллической решетки и производя все возможные параллельные переносы. Выбрав в качестве исходного другой узел (не входящий в первую решетку Бравэ), мы получили бы решетку Бравэ, смещенную относительно первой. Поэтому ясно, что кристаллическая решетка представляет собой, вообще говоря, несколько решеток Бравэ, вдвинутых одна в другую; каждая из них соответствует определенному сорту и расположению атомов, причем все эти решетки, рассматриваемые как системы точек, т. е. чисто геометрически, совершенно тождественны.
Вернемся снова к элементарным ячейкам. Соответственно произвольности в выборе основных периодов неоднозначным является также и выбор элементарной ячейки. Элементарная ячейка может быть построена на любых основных периодах. Получающиеся таким образом ячейки обладают, конечно, различной формой; объем же всех их оказывается одинаковым. В этом проще всего убедиться следующим образом. Из предыдущего ясно, что каждая элементарная ячейка содержит по одному из узлов, принадлежащих к каждой из решеток Бравэ, которые можно построить в данном кристалле. Следовательно, число элементарных ячеек в данном объеме всегда равно числу атомов какого-либо определенного сорта и расположения, т. е. не зависит от выбора ячейки. Поэтому не зависит от выбора ячейки и объем каждой из них, равный общему объему, деленному на число ячеек.