
- •Часть 1
- •Глава I
- •§ 1. Статистическое распределение
- •§ 2. Статистическая независимость
- •§ 3. Теорема Лиувилля
- •§ 4. Роль энергии
- •§ 5. Статистическая матрица
- •§ 6. Статистическое распределение в квантовой статистике
- •§ 7. Энтропия
- •§ 8. Закон возрастания энтропии
- •Глава II
- •§ 9. Температура
- •§10. Макроскопическое движение
- •1) Производную по вектору надо понимать как вектор, составляющие которого равны производным по составляющим вектора, по которому произ- водится дифференцирование.
- •§11. Адиабатический процесс
- •§ 12. Давление
- •§ 13. Работа и количество тепла
- •§ 14. Тепловая функция
- •§ 15. Свободная энергия н термодинамический потенциал
- •§16. Соотношения между производными термодинамических
- •§ 16] Производные термодинамических величин
- •§ 17. Термодинамическая шкала температуры
- •§ 18. Процесс Джоуля — Томсона
- •§ 19. Максимальная работа
- •§ 20. Максимальная работа, производимая телом, находящимся во внешней среде
- •§ 20] Тело, находящееся во внешней среде 77
- •§ 21. Термодинамические неравенства
- •§ 22. Принцип Ле-Шателье
- •§ 23. Теорема Нернста
- •§ 24. Зависимость термодинамических величин от числа частиц
- •§ 25. Равновесие тела во внешнем поле
- •§ 26. Вращающиеся тела
- •§ 27. Термодинамические соотношения в релятивистской области
- •Глава III
- •§ 28. Распределение Гиббса
- •§ 29. Распределение Максвелла
- •§ 30. Распределение вероятностей для осциллятора
- •§ 31. Свободная энергия в распределении Гиббса
- •§ 32. Термодинамическая теория возмущений
- •§ 33. Разложение по степеням %
- •§ 34. Распределение Гиббса для вращающихся тел
- •§ 35. Распределение Гиббса с переменным числом частиц
- •§ 36. Вывод термодинамических соотношений из распределения Гиббса
- •Глава IV
- •§ 37. Распределение Больцмана
- •§ 38. Распределение Больцмана в классической статистике
- •§ 39. Столкновения молекул
- •§ 40. Неравновесный идеальный газ
- •§ 41. Свободная энергия больцмановского идеального газа
- •§ 42. Уравнение состояния идеального газа
- •§ 43. Идеальный газ с постоянной теплоемкостью
- •15. Определить максимальную работу, которую можно получить с по- мощью идеального газа при охлаждении от температуры т до температуры среды т0 при постоянном объеме.
- •§ 44. Закон равнораспределения
- •§ 43. Одноатомный идеальный газ
- •§ 46. Одноатомный газ. Влияние электронного момента
- •§ 47. Двухатомный газ с молекулами из различных атомов. Вращение молекул
- •§ 48. Двухатомный газ с молекулами из одинаковых атомов. Вращение молекул
- •§ 49. Двухатомный газ. Колебания атомов
- •§ 50. Двухатомный газ. Влияние электронного момента
- •§51] Многоатомный газ 169
- •§ 51. Многоатомный газ
- •§ 52. Магнетизм газов
- •Глава V
- •§ 53. Распределение Ферми
- •§ 54. Распределение Бозе
- •§ 55. Неравновесные ферми- и бозе-газы
- •§ 56. Ферми- и бозе-газы элементарных частиц
- •§ 56] Ферми- и бозе-газы элементарных частиц 185
- •§ 57. Вырожденный электронный газ
- •§ 58. Теплоемкость вырожденного электронного газа
- •§ 59. Магнетизм электронного газа. Слабые поля
- •§ 60. Магнетизм электронного газа. Сильные поля
- •§ 61. Релятивистский вырожденный электронный газ
- •§ 62. Вырожденный бозе-газ
- •§ 63. Черное излучение
- •Глава VI
- •§ 64. Твердые тела при низких температурах
- •§ 65. Твердые тела при высоких температурах
- •§ 66. Интерполяционная формула Дебая
- •§ 67. Тепловое расширение твердых тел
- •§ 68. Сильно анизотропные кристаллы
- •§ 69. Колебания кристаллической решетки
- •§ 70. Плотность числа колебаний
- •§ 71. Фононы.
- •§ 72. Операторы рождения и уничтожения фононов
- •§ 73. Отрицательные температуры
- •Глава VII
- •§ 74. Отклонение газов от идеальности
- •§ 75. Разложение по степеням плотности
- •§ 76. Формула ван-дер Ваальса
- •§ 77. Связь вириального коэффициента с амплитудой рассеяния
- •§ 78. Термодинамические величины классической плазмы
- •§ 79. Метод корреляционных функций
- •§ 80. Термодинамические величины вырожденной плазмы
- •1) В этом случае
- •Глава VIII
- •§ 81. Условия равновесия фаз
- •§ 82. Формула Клапейрона — Клаузиуса
- •§ 83. Критическая точка
- •§ 84. Закон соответственных состояний
- •Глава IX
- •§ 85. Системы с различными частицами
- •§ 86. Правило фаз
- •§ 87. Слабые растворы
- •§ 88. Осмотическое давление
- •§ 89. Соприкосновение фаз растворителя
- •§ 90. Равновесие по отношению к растворенному веществу
- •§ 91. Выделение тепла и изменение объема при растворении
- •§ 92. Растворы сильных электролитов
- •§ 93. Смесь идеальных газов
- •§ 94. Смесь изотопов
- •§ 95. Давление пара над концентрированным раствором
- •§ 96. Термодинамические неравенства в растворах
- •§ 97. Кривые равновесия
- •§ 98. Примеры диаграмм состояния
- •§ 99. Пересечение особых кривых поверхности равновесия
- •§ 100. Газ и жидкость
- •Глава X
- •§ 101. Условие химического равновесия
- •§ 102. Закон действующих масс
- •§ 103. Теплота реакции
- •§ 104. Ионизационное равновесие
- •§ 105. Равновесие по отношению к образованию пар
- •Глава XI
- •§ 106. Уравнение состояния вещества при больших плотностях
- •§ 107. Равновесие тел с большой массой
- •§ 108. Энергия гравитирующего тела
- •§ 109. Равновесие нейтронной сферы
- •Глава XII
- •§110. Распределение Гаусса
- •§ 110] Распределение гаусса 365
- •§ 111. Распределение Гаусса для нескольких величин
- •§ 113. Флуктуации в идеальном газе
- •§114. Формула Пуассона
- •§ 115. Флуктуации в растворах
- •§ 116. Пространственная корреляция флуктуации плотности
- •§ 117. Корреляция флуктуации плотности в вырожденном газе
- •§ 118. Корреляция флуктуации во времени
- •§ 119. Временная корреляция флуктуации нескольких величин
- •§ 120. Симметрия кинетических коэффициентов
- •§ 121. Диссипативная функция
- •§ 122. Спектральное разложение флуктуации
- •§ 123. Обобщенная восприимчивость
- •§ 123] Обобщенная восприимчивость 411
- •§ 124. Флуктуационно-диссипационная теорема
- •§ 125. Флуктуационно-диссипационная теорема для нескольких величин
- •§ 126. Операторное выражение обобщенной восприимчивости
- •§ 127. Флуктуации изгиба длинных молекул
- •Глава XIII
- •§ 128. Элементы симметрии кристаллической решетки
- •§ 129. Решетка Бравэ
- •§ 130. Кристаллические системы
- •§ 131. Кристаллические классы
- •§ 132. Пространственные группы
- •§ 133. Обратная решетка
- •§ 134. Неприводимые представления пространственных групп
- •§ 135. Симметрия относительно обращения времени
- •§ 136. Свойства симметрии нормальных колебаний кристаллической решетки
- •§ 137. Структуры с одно- и двумерной периодичностью
- •§ 138. Корреляционная функция в двумерных системах
- •§ 139. Симметрия по ориентации молекул
- •§ 140. Нематические и холестерические жидкие кристаллы
- •§ 141. Флуктуации в жидких кристаллах
- •Глава XIV
- •§ 142. Фазовые переходы второго рода
- •§ 143. Скачок теплоемкости
- •§ 144. Влияние внешнего поля на фазовый переход
- •§ 145. Изменение симметрии при фазовом переходе второго рода
- •§ 146. Флуктуации параметра порядка
- •§ 147. Эффективный гамильтониан
- •§ 148. Критические индексы
- •§ 149. Масштабная инвариантность
- •§ 150. Изолированные и критические точки непрерывного перехода
- •§ 151. Фазовый переход второго рода в двумерной решетке
- •§ 153. Флуктуационная теория критической точки
- •Глава XV
- •§ 154. Поверхностное натяжение
- •§ 155. Поверхностное натяжение кристаллов
- •§ 156. Поверхностное давление
- •§ 157. Поверхностное натяжение растворов
- •§ 158. Поверхностное натяжение растворов сильных электролитов
- •§ 159. Адсорбция
- •§ 160. Смачивание
- •§ 161. Краевой угол
- •§ 162. Образование зародышей при фазовых переходах
- •§ 1Б2] образование зародышей при фазовых переходах 581
- •§ 163. Невозможность существования фаз в одномерных системах
§ 119. Временная корреляция флуктуации нескольких величин
Полученные в предыдущем параграфе результаты можно обобщить на флуктуации, в которых отклоняются от своих равновесных значений сразу несколько величин х1г лг3, ..., хп. Снова будем считать, что из этих величин уже вычтены их равновесные значения, так что все средние значения х,= 0.
Корреляционные функции флуктуации этих величин определяются (в классической теории) как
Ф«(*'-0 = <*<('') **(')>• (П9Д)
Уже в силу самого этого определения они обладают очевидным свойством симметрии
Ф/*(0 = Ф«<-0. (119,2)
Существует, однако, еще и другое свойство симметрии корреляционных функций, имеющее глубокий физический смысл. Оно возникает как следствие симметрии уравнений механики, которыми описывается движение частиц тела, по отношению к обращению времениг). В силу этой симметрии совершенно безразлично, какую из величин х{ и xk брать при усреднении в более ранний, а какую—в более поздний момент времени. Поэтому <*,(*') **(')> = <*«(') **('')>. т- е-
<Р/»(') = Ф,-.(-'). (119,3)
Из обоих свойств (119,2—3) следует также, что ф,-*(*) = Фй,-(0-В этом выводе молчаливо подразумевалось, что сами величины Xi таковы, что при изменении знака времени они остаются неизменными. Но существуют также и величины, которые сами меняют знак при обращении времени (например, величины, пропорциональные скоростям каким-либо макроскопических движений). Если обе величины х{ и хк обладают таким свойством, то соотношение (119,3) будет по-прежнему справедливым. Если же одна из двух величин меняет знак, а другая остается неизменной, то симметрия по отношению к обращению времени означает, что <xi(t')xk{t)-> = — <xi(t)xk{t')'>, т. е.
Ф/*(') = -Ф«(-')- (П9,4)
Вместе с (119,2) отсюда следует: ф,-й(£) = — ф«(0-
Будем предполагать теперь, как и в предыдущем параграфе, что флуктуации квазистационарны, т. е. набор значений величин xlf хп (выходящих за границы их средних флуктуации)
определяет некоторое макроскопическое состояние неполного равновесия. В процессе приближения к полному равновесию величины X; меняются со временем; предполагается, что набор функций X; (t) полностью характеризует этот процесс, и никаких других отклонений от равновесия в нем не возникает. Тогда скорости изменения величин х{ в каждом неравновесном состоянии являются функциями от значений хх, х„ в этом состоянии:
х, = Xi(xlt хп). (119,5)
Если система находится в состоянии, сравнительно близком к полному равновесию (т. е. если величины х{ можно считать малыми), можно разложить функции (119,5) по степеням хь ограничившись членами первого порядка, т. е. представить их в виде линейных сумм
х,- = -Я,Л (119,6)
с постоянными коэффициентами kik 2); эти выражения обобщают уравнение (118,5).
*)
Подразумевается, что система не
находится в магнитном поле и не
вращается как целое (см. ниже в §
120).
2)
Как и в § 111, по дважды повторяющимся
латинским индексам подразумевается
суммирование от 1 до п.
значения (t) величин X; в момент времени t > 0 при заданных значениях всех xlt х2, ... в предшествующий момент t = 0 (сами эти значения в обозначении |,-(г) для краткости опускаются). Эти величины удовлетворяют тем же уравнениям (119,6):
(П9,7)
причем уже не только для больших (по сравнению со средними флуктуациями), но и для произвольных малых значений £,(г). Корреляционные функции получаются из (г) умножением на xt — Х[(0) и усреднением по вероятностям различных значений хг:<р,7 (t) — <£,• (t)xty. Произведя эту операцию с уравнением (119,7), получим
^Ф//(0 = -Ь/*Ф«(0. *>0 (119,8)
(индекс / в этой системе уравнений свободный).
Как уже указывалось, уравнения (119,6) представляют собой не что иное, как линеаризованные макроскопические «уравнения движения» неравновесной системы, описывающие процесс ее релаксации. Мы видим, что система уравнений для корреляционных функций флуктуации получается просто заменой в этих «уравнениях движения» величин х{ (t) на функции ф,-, (t) со «свободным» индексом /, пробегающим все значения от 1 до и. Получающиеся таким образом уравнения относятся к временам t > 0 и должны быть проинтегрированы при «начальном условии»
Ф/* (0) = <*/ (0) xk (0)> = = Вг*1 (119,9)
(средние значения <*,-jeft> должны быть равны своим известным значениям (111,9)). Для времен же t < 0 корреляционные функции определяются затем непосредственно по их свойствам симметрии.