- •Введение
- •1. Основные классы неорганических соединений
- •Примеры составления условий задач и их решения
- •1.1. Тесты. Основные классы неорганических соединений
- •2. Газовые законы. Простейшие стехиометрические законы
- •2.1. Взаимозависимые параметры состояния газов
- •Примеры составления условий задач и их решения
- •2.2. Химические эквиваленты
- •Примеры составления условия задач и их решения
- •2.3. Тесты. Стехиометрия химических превращений
- •3. Основные закономерности протекания химических реакций
- •3.1. Энергетика химических реакций. Химико-термодинамические расчеты
- •Примеры составления условий задач и их решения
- •3.2. Тесты. Энергетика химических реакций
- •3.3. Скорость химических реакций и химическое равновесие
- •Примеры составления условий задачи и их решение
- •3.4. Тесты. Химическая кинетика и равновесие
- •4. Окислительно – восстановительные процессы
- •4.1. Окислительно-восстановительные реакции
- •Ионно-электронный метод
- •Примеры составления условий задач и их решения
- •4.2. Тесты. Окислительно-восстановительные реакции
- •4.3. Гальванические элементы
- •Примеры составления условий задач и их решения
- •4.4. Электролиз
- •Примеры составления условий задач и их решения
- •1. Электролиз водного раствора Na2so4.
- •3. Электролиз водного раствора кВr.
- •4. Электролиз водного раствора СuCl2.
- •4.5. Тесты. Электрохимические элементы. Электролиз
- •4.6. Коррозия металлов
- •Механизм коррозии
- •Примеры составления условий задач и их решение
- •4.7. Тесты. Коррозия металлов
- •5. Растворы
- •5.1 Способы выражения содержания растворенного вещества в растворе
- •Примеры составления условий задач и их решения
- •5.2. Физико-химические свойства разбавленных растворов неэлектролитов
- •Свойства растворов неэлектролитов
- •Примеры составления условий задач и их решения
- •5.3. Растворы электролитов
- •В задачах 757–771 определить кажущуюся степень диссоциации водных растворов электролитов по их температурам кипения
- •5.4. Ионное произведение воды. Водородный показатель
- •Примеры составления задач и их решения
- •5.5. Молекулярно-ионные уравнения обменных реакций между растворами электролитов
- •Примеры составления задач и их решения
- •5.6. Произведение растворимости
- •Примеры составления задач и их решения
- •5.7. Гидролиз солей
- •Примеры составления задач и их решения
- •5.8. Тесты. Растворы
- •6. Строение атома
- •Примеры составления условий задач и их решения
- •6.1. Тесты. Строение атома
- •7. Комплексные соединения
- •Примеры составления задач и их решение
- •7.1. Тесты. Комплексные соединения
- •8. Химические свойства металлов
- •8.1. Взаимодействие металлов с водой
- •Примеры составления условий задач и их решения
- •8.2. Взаимодействие металлов с водными растворами щелочей
- •Взаимодействие металлов с расплавами щелочей
- •Примеры составления условий задач и их решения
- •8.4. Окислительные свойства концентрированной серной кислоты
- •8.5. Окислительные свойства азотной кислоты
- •Примеры составления условий задач и их решение
- •8.6. Окисление металлов катионами других металлов в водных растворах
- •8.7. Тесты. Химические свойства металлов
- •8.8. Тесты. S-, p-, d-, f – элементы и их соединения
- •9. Биологическая роль химических элементов в организме
- •Примеры составления условий задач и их решения
- •9.1. Тесты. Биологическая роль химических элементов в организме
- •Оглавление
4. Окислительно – восстановительные процессы
4.1. Окислительно-восстановительные реакции
Окислительно-восстановительными реакциями называются реакции, сопровождающиеся переходом электронов от одних атомов или ионов к другим. Теория окислительно-восстановительных процессов основана на следующих понятиях:
- окисление (о-е) – процесс отдачи электронов атомом, молекулой или ионом. При окислении степень окисления увеличивается. Например:
Са – 2е → Са2+; Н2 – 2е → 2Н+; Sn+2 – 2e → Sn+2;
- восстановление (в-е) – процесс присоединения электронов атомом, молекулой или ионом. Например:
Se + 2e → Se2–; Br2 + 2e → 2Br–; Sn+4 + 2e → Sn+2.
При восстановлении степень окисления уменьшается.
Вещества, отдающие электроны, называются восстановителями. Вещества, присоединяющие электроны называются окислителями.
Окислительно-восстановительные реакции являются сопряженными. Окисление невозможно без одновременно протекающего с ним восстановления и наоборот. Известно, что правильно составленное уравнение химической реакции является выражением законов сохранения массы и энергии. Чтобы законы сохранения соблюдались, химические реакции необходимо уравнивать. Существует несколько способов достижения искомой цели.
Ионно-электронный метод
Этот метод применим только для окислительно-восстановительных реакций, протекающих в растворах электролитов. В методе ионо-электронных полуреакций коэффициенты окислительно-восстановительной реакции определяют с учетом конкретной формы ионов, участвующих во взаимодействии.
Преимущество метода состоит в том, что нет необходимости пользоваться формальным представлением о степени окисления; применяются реально существующие ионы. Кроме того, этот метод позволяет учесть влияние реакции среды на характер окислительно-восстановительного процесса. При составлении ионно-электронных полуреакций необходимо использовать правила стяжения и два вывода, вытекающих из них.
1. Если продукт реакции содержит больше кислорода, чем исходное вещество, то расходуется либо вода – в нейтральных и кислых растворах, либо ионы ОН– – в щелочных растворах (р.окисления).
Например: SO32–+ Н2О – 2е SO42– + 2H+.
Продукт реакции SO42– содержит больше кислорода, чем исходное вещество SO32–. Следовательно, в нейтральной и кислой среде недостающий кислород берется из воды: Н2О О2– + 2H+.
В полуреакции: СrO2– + 4OH– СrO42– + Н2О
недостающий кислород берется из гидроксид ионов, учитывая правило стяжения в щелочной среде: 2OH– О2– + Н2О.
2. Если продукт реакции содержит меньше кислорода, чем исходное вещество, то в кислой среде образуется вода, а в нейтральной и щелочной - ионы ОН– (р.восстановления).
Например: Сr2O72– + 14 H+ + 6е 2 Сr3– + 7 H2O.
Избыточный кислород в кислой среде образует с ионами водорода воду:
О2– + 2Н+ Н2O.
MnO4– + 2 H2O + 3e MnО2 + 4 ОН–.
Избыточный кислород в нейтральной и щелочной среде стягивается с молекулами воды с образованием гидроксид-ионов:
О2– + Н2O 2OH–.
