
- •Лекция 1
- •1. Принципы работы и основные понятия
- •1.1.Схемы удаления припуска и движения режущей части инструмента.
- •1.2. Режущая кромка и поверхности режущей части инструмента.
- •1.3. Геометрические параметры в рабочем состоянии.
- •Лекция 2
- •2. Элементы резания и срезаемого слоя при точении.
- •2.1. Поверхности и движения при точении.
- •2.2.Технологические и физические параметры
- •2.3. Режущие кромки и виды резания.
- •2.4. Шероховатость обработанной поверхности.
- •Лекция 3
- •3. Инструментальные материалы, их физико-механические свойства и выбор в зависимости от вида инструмента и заданного технологического процесса
- •3.1.Требования, предъявляемые к инструментальным материалам.
- •3.2. Углеродистые инструментальные стали
- •3.3. Легированные инструментальные стали.
- •3.4. Быстрорежущие (высоколегированные) стали.
- •Основные марки ванадиевых сталей:
- •Основные марки кобальтовых сталей:
- •3.5. Твердые сплавы (металлокерамика).
- •3.6. Режущая керамика (минералокерамика).
- •3.7. Алмазы.
- •3.8. Нитрид бора.
- •3.9. Основные тенденции в развитии
- •Лекция 4
- •4.Физические основы процесса резания
- •4.1. Типы стружек при резании
- •4.1.1. Элементная стружка.
- •4.1.2. Сливная стружка.
- •4.1.3. Суставчатая стружка.
- •4.1.4. Стружка скалывания.
- •Влияние факторов процесса резания на тип
- •4.2. Процесс образования сливной стружки.
- •4.3. Наростообразование.
- •Деформация срезаемого слоя
- •4.5. Силы, действующие на режущую часть инструмента.
- •Источники образования тепла при резании.
- •Лекция 5
- •4.7. Температура резания.
- •Понятие о температуре резания.
- •Способы измерения температуры резания.
- •Метод полуискусственной термопары.
- •Зависимость температуры резания от параметров
- •4.8. Изнашивание инструментов в процессе работы.
- •4.8.1. Физическая природа изнашивания инструмента.
- •Абразивное изнашивание.
- •Адгезионное изнашивание.
- •Диффузионное изнашивание.
- •Химическое и окислительное изнашивание.
- •4.8.2. Внешнее проявление изнашивания инструмента.
- •4.8.3. Нарастание износа за время работы инструмента.
- •4.8.4. Критерии износа.
- •Критерий оптимального износа.
- •Критерий технологического износа.
- •Лекция 6
- •5. Точение.
- •5.1. Резцы. Геометрические параметры токарных проходных резцов.
- •5.2. Типы резцов.
- •5.3. Способы крепления режущей части к корпусу.
- •5.4. Форма передней и задней поверхностей.
- •5.4.1. Передняя поверхность.
- •5.4.2. Задняя поверхность.
- •Плоские задние поверхности.
- •2. Фасонные задние поверхности.
- •Лекция 7
- •5.5. Резцы фасонные и методы их профилирования.
- •5.5.1. Назначение и типы фасонных резцов.
- •5.5.2.Радиальные призматические резцы.
- •5.5.5. Сравнительная характеристика фасонных резцов.
- •5.6. Профилирование фасонных радиальных резцов.
- •5.7.Задние углы фасонных резцов в рабочем состоянии.
- •5.8. Мероприятия по улучшению условий работы режущих кромок
- •Лекция 8
- •5.9. Особенности работы тангенциальных резцов.
- •5.10. Силы резания и мощность при точении.
- •5.12. Влияние факторов процесса резания на силу резания
- •5.12.1. Влияние параметров срезаемого слоя.
- •5.12.2. Влияние остальных факторов процесса резания.
- •5.13.Связь периода стойкости со скоростью резания.
- •В качестве аппроксимирующей (заменяющей) удобна функция:
- •5.14. Оптимальный период стойкости.
- •5.15. Зависимость скорости резания от факторов процесса резания.
- •5.15.1. Обобщенная формула скорости резания.
- •5.15.2. Влияние параметров срезаемого слоя
- •5.15.3. Влияние остальных факторов процесса резания.
- •5.16. Принцип назначения режимов резания.
- •5.17. Порядок назначения режимов резания при токарной обработке.
- •Режимы резания рассчитывают в следующем порядке
- •Лекция 9 План лекции
- •6. Протягивание.
- •6.1.Назначение и характеристика протяжек.
- •6.2. Конструкции протяжек
- •6.2.1. Основные типы протяжек
- •6.2.2. Протяжки для внутренних поверхностей.
- •6.2.3. Прошивки.
- •6.2.4. Протяжки для наружных поверхностей.
- •Протяжки, работающие на сжатие.
- •6.3. Схемы резания.
- •6.3.1. Понятие о схеме резания.
- •6.3.2. Классификация схем резания по характеру срезаемых слоев.
- •6.3.3.Класификация схем резания по способу формирования
- •Лекция 10
- •6.4. Подъем на зуб.
- •6.5. Углы заточки зубьев.
- •6.6. Размеры зубьев протяжки.
- •6.7.Число зубьев.
- •6.8. Длина протяжки.
- •6.9. Силы резания при протягивании и расчет протяжек на прочность.
- •6.10. Размеры и допуски калибрующей части протяжек.
- •7.Сверление.
- •7.1. Назначение и основные типы сверл.
- •7.2. Элементы конструкции винтовых сверл.
- •7.3.Способы заточки сверл.
- •7.3.1. Требования к расположению и форме режущих кромок.
- •7.3.2. Коническая заточка.
- •7.3.3. Винтовая заточка.
- •7.3.4. Плоская заточка.
- •Лекция 11
- •7.4. Передние и задние углы в рабочем состоянии.
- •7.5. Главный угол в плане сверла и его связь с элементами резания
- •7.6. Угол наклона винтовых стружечных канавок.
- •7.7. Условия работы поперечных режущих кромок.
- •7.8. Условия работы вспомогательных режущих кромок.
- •7.9.Порядок назначения режимов резания при сверлении.
- •7.10. Сверла для глубоких отверстий.
- •7.10.1. Особенности глубокого сверления и основные типы сверл.
- •7.10.2. Конструкция и принцип работы сверл одностороннего резания с внутренним отводом стружки.
- •7.10.4. Геометрические параметры свёрл одностороннего резания.
- •Лекция 12
- •8. Развертки.
- •8.1. Назначение и основные типы разверток.
- •8.3.Геометрические параметры развёрток.
- •8.3.1. Передний угол.
- •8.3.2. Задний угол.
- •8.3.3. Элементы резания и срезаемого слоя и их связь
- •8.4. Число, форма и расположение стружечных канавок разверток.
- •8.5. Диаметр и допуски калибрующей части разверток.
- •9. Фрезерование.
- •9.1. Назначение и область применения фрез.
- •9.2.1. Классификация фрез по принципу образования поверхности детали, их особенности, элементы резания и срезаемого слоя.
- •1.Осевые фрезы (рис. 9.1).
- •2. Торцовые фрезы (рис.9.2).
- •3. Торцово – осевые фрезы (рис.9.3).
- •9.2.2. Классификация по принципу образования задней поверхности зубьев фрез и их особенности.
- •Лекция 13
- •9.3. Фрезы с острозаточенными зубьями (остроконечные).
- •9.3.1. Форма зубьев.
- •9.3.3. Диаметр.
- •9.3.4. Число зубьев.
- •9.4. Фрезы затылованные.
- •9.4.1. Схема затылования.
- •9.4.2. Расчет падения кулачка.
- •9.4.3. Задний угол в рабочем состоянии.
- •Лекция 14
- •9.4.4. Мероприятия по улучшению условий работы режущих кромок
- •1. Косое затылование (рис.9.13).
- •2. Установка детали под углом (рис.9.15).
- •9.4.5. Профилирование.
- •10. Обработка резьбы.
- •10.1. Резьбообразующий инструмент.
- •Метчики.
- •10.2.1. Назначение и типы.
- •10.2.2. Элементы конструкции и принцип работы метчика
- •10.2.3. Число, форма и направление стружечных канавок.
- •Лекция 15
- •10.3. Самооткрываюциеся резьбонарезные головки.
- •10.3.1. Принцип работы, характеристика и область применения
- •10.3.2. Типы гребёнок к самооткрывающимся резьбонарезным головкам, их характеристика и область применения.
- •10.3.3. Элементы конструкции, геометрические параметры
- •10.4. Резьбонакатной инструмент.
- •10.4.1. Плоские резьбонакатные плашки.
- •10.4.2. Резьбонакатные ролики.
- •11. Инструменты для обработки зубчатых колес.
- •11.1. Методы нарезания зубьев.
- •11.1.1.Метод фасонной обработки.
- •Лекция 16
- •11.1.2. Метод обката.
- •11.1.3. Комбинированный метод.
- •11.2. Дисковые модульные фрезы.
- •Пальцевые модульные фрезы.
- •11. 4. Зуборезные долбяки.
- •Назначение и основные типы долбяков.
- •Выбор номинального диаметра и числа зубьев долбяка.
- •11.4.4. Расчет размеров зубьев долбяка
- •Выбор исходных расстояний.
- •Передние и задние углы.
- •Общая характеристика долбяков.
- •Лекция 17
- •11.5. Червячные зуборезные фрезы.
- •Назначение и основные типы.
- •Элементы конструкции червячных фрез для эвольвентных цилиндрических колес и их выбор.
- •Принцип работы червячных фрез.
- •Общая характеристика червячных фрез.
- •Шеверы.
- •11.6.1.Назначение и основные типы.
- •Принцип работы дисковых шеверов.
5.15. Зависимость скорости резания от факторов процесса резания.
5.15.1. Обобщенная формула скорости резания.
Обобщенная формула скорости резания устанавливается экспериментально путем обобщения частных зависимостей также, как для силы резания.
Она
имеет вид
,
Где Сv – коэффициент, учитывающий факторы, принятые постоянными в качестве эталонных при проведении экспериментов.
5.15.2. Влияние параметров срезаемого слоя
Экспериментально установлено, что xv < yv . Например, при обточке конструкционной стали би = 750 Н/мм2 резцами из быстрорежущей стали Xv = 0,25; Yv =0,66.
Таким образом, влияние подачи на скорость резания больше, чем глубины резания. Поэтому с точки зрения повышения скорости и, следовательно, производительности, при постоянной площади срезаемого слоя выгоднее работать с большими глубинами резания и меньшими подачами или меньшим отношением S/t.
Переходя
к физическим параметрам сечения
срезаемого слоя, будем иметь
,
.
Обозначив
,
получим
.
Поскольку физические параметры более полно отражают параметры срезаемогослоя, то формула является более общей.
Из формулы видно, что толщина и ширина срезаемого слоя влияют на скорость резания в той же степени, что соответственно подача и глубина резания. Поэтому для увеличения скорости резания и производительности процесса резания выгоднее работать с большей шириной срезаемого слоя и меньшей толщиной, или с меньшим отношением a/b.
С физической точки зрения это обусловлено тем, что в указанном случае за счет увеличения длины участвующей в работе кромки улучшается теплоотвод и снижается температура резания, а она и является основным фактором, ограничивающим скорость резания. Следует обратить внимание, что на силу резания в большей степени влияет b , а в меньшей степени a. А для уменьшения силы резания следует работать с большим отношением a/b. Поэтому параметры срезаемого слоя следует выбирать с учетом конкретных условий.
5.15.3. Влияние остальных факторов процесса резания.
Все факторы процесса резания, кроме параметров срезаемого слоя и периода стойкости, обычно учитывают коэффициентами. Коэффициент Кv учитывает влияние факторов при их отличии от эталонных условий работы
Км – учитывает влияние характеристик обрабатываемого материала
Ко – учитывает влияние обрабатываемости материала, т.е. его способности подвергаться обработке резанием.
Если принять в качестве эталонной углеродистую сталь с бв = 750 Н/мм2, то при обработке, например, марганцовистой стали с тем же пределом прочности износ инструмента будет происходить интенсивнее за счет структурных составляющих этой стали. Поэтому, чтобы работать с тем же пределом стойкости, необходимо снизит скорость резания.
Для указанного случая Ко = 0,8.
Кu – учитывает изменение марки инструментального материала.
Например, при эталонном материале ТI5K6 для сплава Т5КI0
Кu = 0,65, для Т30К4 Кu = 1,4.
К
– учитывает влияние главного угла в
плане
С уменьшением уменьшается толщина среза и увеличивается ширина. За счет чего уменьшается a/b.
Поэтому скорость резания будет большей (усилие резания при этом также увеличивается).
Кr – учитывает влияние радиуса переходной кромки. С увеличением r скорость возрастает за счет меньших значений на радиусном участке.
К - учитывает влияние угла . При отклонении от оптимального значения скорость будет уменьшаться (рис.5.30) за счет увеличения температуры резания. При малых значениях температура возрастает за счет большей деформации срезаемого слоя, а при больших значениях – за счет ухудшения теплоотвода (площадь теплоотвода на резце меньше).
К - учитывает максимально допустимую величину износа. При увеличении допустимого износа при том же периоде стойкости скорость должна быть большей.
Ксож – учитывает влияние применяемой СОЖ. СОЖ уменьшает силы трения, температуру резания, поэтому скорость может быть большей.
При совпадении каждого фактора с эталонным, соответствующие коэффициенты равны 1.
|
Рис.5.30. Схема влияния переднего угла на скорость резания V.
|