Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СамостоятельнаяРаботаМатематика1курс.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.27 Mб
Скачать

2. Уравнения прямой, виды уравнений прямой в пространстве.

2.1. Уравнения прямой в пространстве – начальные сведения.

Уравнение прямой на плоскости в прямоугольной системе координат Oxy представляет собой линейное уравнение с двумя переменными x и y, которому удовлетворяют координаты любой точки прямой и не удовлетворяют координаты никаких других точек. С прямой в трехмерном пространстве дело обстоит немного иначе – не существует линейного уравнения с тремя переменными x, y и z, которому бы удовлетворяли только координаты точек прямой, заданной в прямоугольной системе координат Oxyz. Действительно, уравнение вида , где x, y и z – переменные, а A, B, C и D – некоторые действительные числа, причем А, В и С одновременно не равны нулю, представляет собой общее уравнение плоскости. Тогда встает вопрос: «Каким же образом можно описать прямую линию в прямоугольной системе координат Oxyz»?

2.2. Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.

Напомним одну аксиому: если две плоскости в пространстве имеют общую точку, то они имеют общую прямую, на которой находятся все общие точки этих плоскостей. Таким образом, прямую линию в пространстве можно задать, указав две плоскости, пересекающиеся по этой прямой.

Переведем последнее утверждение на язык алгебры.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и известно, что прямая a является линией пересечения двух плоскостей и , которым отвечают общие уравнения плоскости вида и соответственно. Так как прямая a представляет собой множество всех общих точек плоскостей и , то координаты любой точки прямой a будут удовлетворять одновременно и уравнению и уравнению , координаты никаких других точек не будут удовлетворять одновременно обоим уравнениям плоскостей. Следовательно, координаты любой точки прямой a в прямоугольной системе координат Oxyz представляют собой частное решение системы линейных уравнений вида , а общее решение системы уравнений определяет координаты каждой точки прямой a, то есть, определяет прямую a.

Итак, прямая в пространстве в прямоугольной системе координат Oxyz может быть задана системой из уравнений двух пересекающихся плоскостей .

Вот пример задания прямой линии в пространстве с помощью системы двух уравнений - .

Описание прямой линии уравнениями двух пересекающихся плоскостей отлично подходит при нахождении координат точки пересечения прямой и плоскости, а также при нахождении координат точки пересечения двух прямых в пространстве.

2.3. Параметрические уравнения прямой в пространстве.

Параметрические уравнения прямой в пространстве имеют вид , где x1, y1 и z1 – координаты некоторой точки прямой, ax, ay и az (ax, ay и az одновременно не равны нулю) - соответствующие координаты направляющего вектора прямой, а - некоторый параметр, который может принимать любые действительные значения.

При любом значении параметра по параметрическим уравнениям прямой в пространстве мы можем вычислить тройку чисел , она будет соответствовать некоторой точке прямой (отсюда и название этого вида уравнений прямой). К примеру, при из параметрических уравнений прямой в пространстве получаем координаты x1, y1 и z1: .

В качестве примера рассмотрим прямую, которую задают параметрические уравнения вида . Эта прямая проходит через точку , а направляющий вектор этой прямой имеет координаты .