
- •Содержание
- •Раздел 1. Алгебра и элементарные функции 3
- •Раздел 2. Начала математического анализа 17
- •Раздел 3. Геометрия 39
- •Раздел 4. Элементы теории вероятностей и математической статистики 126
- •I Общие рекомендации по выполнению самостоятельных работ
- •II Самостоятельная работа Раздел 1. Алгебра и элементарные функции
- •1.1. Составление кроссвордов по теме «Степени и логарифмы» (4 часа).
- •1.2. Гармонические колебания (4 часа).
- •Уравнение гармонического колебания
- •1.4. Вычисление предела последовательности (6 часов).
- •Раздел 2. Начала математического анализа
- •2.1. Производная неявной функции (4 часа).
- •2.2. Исследование функции на экстремум с помощью второй производной (5 часа).
- •2.3. Приложение производной к решению физических задач (11 часов).
- •2.4. Составление кросснамберов по теме «Определенный интеграл»
- •2.5 Вычисление объема тела и длины дуги кривой (12 часов) Вычисление объема тела вращения
- •Задания для самостоятельной работы по теме "Вычисление объема тела вращения"
- •Ответы для самостоятельной работы по теме "Вычисление объема тела вращения"
- •Вычисление длины дуги кривой
- •2.1. Нахождение длины дуги кривой, если линия задана параметрически
- •2.2. Нахождение длины дуги кривой, если линия задана в полярной системе координат
- •Задания для самостоятельной работы по теме "Вычисление длины дуги кривой"
- •Ответы для самостоятельной работы по теме "Вычисление длины дуги кривой"
- •2.6. Применение определенного интеграла к решению физических и технических задач (12 часов) Применение определенного интеграла к решению физических и технических задач
- •Задача о вычислении пути
- •Задача о вычислении работы переменной силы
- •Задача о силе давления жидкости
- •Систематизация знаний
- •Вопросы для самопроверки
- •Задания для самостоятельного работы
- •Ответы к заданиям для самостоятельной работы
- •Раздел 3. Геометрия
- •3.1. Уравнение прямой и плоскости в пространстве (10 часа).
- •Глава 1. Плоскость в пространстве.
- •1. Плоскость в пространстве - необходимые сведения.
- •1.1. Плоскость – основные понятия, обозначения и изображение.
- •1.2. Взаимное расположение плоскости и точки.
- •1.3. Прямая и плоскость в пространстве.
- •1.4. Взаимное расположение плоскостей.
- •1.5. Способы задания плоскости.
- •2. Нормальный вектор плоскости, координаты нормального вектора плоскости.
- •2.1. Нормальный вектор плоскости – определение, примеры, иллюстрации.
- •2.2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.
- •3. Уравнение плоскости, виды уравнения плоскости.
- •3.1. Уравнение плоскости – определение.
- •3.2. Общее уравнение плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости.
- •4. Общее уравнение плоскости - описание, примеры, решение задач.
- •4.1. Общее уравнение плоскости - основные сведения.
- •4.2. Общее уравнение плоскости, проходящей через точку.
- •4.3. Неполное общее уравнение плоскости.
- •5. Уравнение плоскости в отрезках - описание, примеры, решение задач.
- •5.1. Уравнение плоскости в отрезках – описание и примеры.
- •5.2. Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
- •6. Нормальное уравнение плоскости - описание, примеры, решение задач.
- •6.1. Нормальное уравнение плоскости – описание и пример.
- •6.2. Приведение общего уравнения плоскости к нормальному виду.
- •7. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой.
- •7.1. Нахождение уравнения плоскости, проходящей через три заданные точки.
- •7.2. Примеры составления уравнения плоскости, проходящей через три заданные точки.
- •Глава 2. Прямая в пространстве.
- •1. Прямая в пространстве - необходимые сведения.
- •1.1. Прямая в пространстве – понятие.
- •1.2. Взаимное расположение прямых в пространстве.
- •1.3. Способы задания прямой в пространстве.
- •2. Уравнения прямой, виды уравнений прямой в пространстве.
- •2.1. Уравнения прямой в пространстве – начальные сведения.
- •2.2. Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.
- •2.3. Параметрические уравнения прямой в пространстве.
- •2.4. Канонические уравнения прямой в пространстве.
- •3. Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.
- •3.1. Уравнения двух плоскостей, задающих прямую линию в пространстве.
- •3.2. Нахождение координат точки, лежащей на прямой, по которой пересекаются две плоскости.
- •3.3. Направляющий вектор прямой, по которой пересекаются две плоскости.
- •3.4. Переход к параметрическим и каноническим уравнениям прямой в пространстве.
- •4. Параметрические уравнения прямой в пространстве - описание, примеры, решение задач.
- •4.1. Параметрические уравнения прямой в пространстве – описание и примеры.
- •4.2. Составление параметрических уравнений прямой в пространстве.
- •4.3. Частные случаи параметрических уравнений прямой в пространстве.
- •4.4. Переход от параметрических уравнений прямой в пространстве к другим видам уравнений прямой.
- •5. Канонические уравнения прямой в пространстве - теория, примеры, решение задач.
- •5.1. Канонические уравнения прямой в пространстве – описание и примеры.
- •5.2. Составление канонических уравнений прямой в пространстве.
- •5.3. Частные случаи канонических уравнений прямой в пространстве.
- •5.4. Канонические уравнения прямой проходящей через две заданные точки пространства.
- •5.5. Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
- •6. Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве.
- •3.2. Подготовка доклада на тему «История возникновения геометрии» (3 часа). Раздел 4. Элементы теории вероятностей и математической статистики
- •4.1. Подготовка доклада на тему «История возникновения теории вероятностей» (3 часа).
- •4.2. Подготовка доклада на тему «Теория вероятностей в современной жизни» (2 часа).
- •Требования к творческой работе студентов по «Математике»
- •Литература
- •Гбоу спо «Уфимский механико-технологический колледж»
- •Реферат Развитие математики в России
4.2. Общее уравнение плоскости, проходящей через точку.
Еще раз повторим, что точка принадлежит плоскости, которая задана в прямоугольной системе координат в трехмерном пространстве общим уравнением плоскости , если при подстановке координат точки в уравнение оно обращается в тождество.
Пример. Принадлежат
ли точки
и
плоскости,
общее уравнение которой имеет вид
.
Решение. Подставим
координаты точки М0
в общее уравнение плоскости:
.
В результате приходим к верному равенству,
следовательно, точка
лежит
в плоскости.
Проделаем такую
же процедуру с координатами точки N0:
.
Получаем неверное равенство, поэтому,
точка
не
лежит в плоскости, определенной общим
уравнением плоскости
.
Ответ. М0 лежит в плоскости, а N0 – не лежит.
Из доказательства теоремы об общем уравнении плоскости виден один полезный факт: вектор является нормальным вектором плоскости . Таким образом, если мы знаем вид общего уравнения плоскости, то мы сразу можем записать координаты нормального вектора этой плоскости.
Пример. Плоскость
в прямоугольной системе координат Oxyz
задана общим уравнением плоскости
.
Запишите координаты всех нормальных
векторов этой плоскости.
Решение. Нам
известно, что коэффициенты при переменных
x,
y
и z
в общем уравнении плоскости являются
соответствующими координатами нормального
вектора этой плоскости. Следовательно,
нормальный вектор
заданной
плоскости
имеет
координаты
.
Множество всех нормальных векторов
можно задать как
.
Ответ.
Теперь рассмотрим обратную задачу – задачу составления уравнения плоскости, когда известны координаты ее нормального вектора. Очевидно, что существует бесконечно много параллельных плоскостей, нормальным вектором которых является вектор . Поэтому, зададим дополнительное условие, чтобы обозначить одну конкретную плоскость. Будем считать, что точка принадлежит плоскости. Таким образом, задав нормальный вектор и точку плоскости , мы зафиксировали плоскость. Получим общее уравнение этой плоскости.
Общее уравнение плоскости с нормальным вектором имеет вид . Так как точка лежит на плоскости, то ее координаты удовлетворяют уравнению плоскости, следовательно, справедливо равенство . Вычтем из левой и правой части равенства левую и правую части равенства соответственно. При этом получаем уравнение вида , которое является общим уравнением плоскости, проходящей через точку и имеющей направляющий вектор плоскости .
Это уравнение
можно было получить и иначе. Очевидно,
что множество точек трехмерного
пространства
определяют
требуемую плоскость тогда и только
тогда, когда векторы
и
перпендикулярны.
То есть, тогда и только тогда, когда их
скалярное
произведение
равно нулю:
.
Пример. Напишите
уравнение плоскости, если в прямоугольной
системе координат Oxyz
в пространстве она проходит через точку
,
а
-
нормальный вектор этой плоскости.
Решение. Приведем два решения этой задачи.
Из условия имеем
.
Подставляем эти данные в общее уравнение
плоскости, проходящей через точку
:
Теперь второй
вариант решения. Пусть
-
текущая точка плоскости. Находим
координаты вектора
по
координатам точек начала и конца:
.
Для получения требуемого общего уравнения
плоскости осталось только воспользоваться
необходимым и достаточным условием
перпендикулярности векторов
и
:
Ответ.