
- •1. Основные свойства и электрические характеристики внешней изоляции электроустановок
- •Общая характеристика внешней изоляции
- •2. Назначение и типы изоляторов
- •Опорные стержневые изоляторы
- •Опорные штыревые изоляторы
- •2. Разряды в воздушных промежутках при постоянном и переменном напряжениях
- •3.2. Развитие разряда и начальные напряжения промежутков с неоднородным электрическим полем.
- •Лекция 7
- •3. Разряды в воздушных промежутках при грозовых и коммутационных импульсах
- •4. Разряд в воздухе вдоль поверхности твердого изолятора
- •4.1. Влияние конструктивных особенностей изоляторов на напряжение перекрытия.
- •4.2. Развитие разряда и напряжения перекрытия изоляторов при неблагоприятных атмосферных воздействиях.
- •5. Влияние характеристик атмосферного воздуха на разрядные напряжения внешней изоляции электроустановок.
- •6. Основные виды и электрические характеристики внутренней изоляции.
- •6.1. Общие свойства внутренней изоляции.
- •6.1.2.Зависимость электрической прочности внутренней изоляции от длительности воздействия напряжения.
- •6.1.3.Самовосстанавливающаяся изоляция
- •6.1.4. Влияние на внутреннюю изоляцию тепловых, механических и других воздействий
- •6.2.Основные виды внутренней изоляции
- •6.2.1. Маслобарьерная изоляция (мби)
- •6.2.4.Твердая изоляция (ти)
- •Вакуумная изоляция
- •7. Грозовые перенапряжения и молниезащита электроустановок
- •7.1. Молния - как источник грозовых перенапряжений
- •7.2. Молниезащита
- •7.3. Заземление молниеотводов
- •7.4. Допустимое расстояние между молниеотводом и защищаемым объектом
- •7.5. Грозозащита воздушных лэп
- •7,6. Допустимое число отключений в год
- •7.7. Попадание молнии в линию без тросов
- •7.8. Попадание молнии в линию с тросами
- •8. Защитные аппараты и устройства
- •8.1. Защитные (искровые) промежутки
- •8.2. Трубчатые разрядники
- •8.3. Вентильные разрядники
- •8.4. Нелинейные ограничители перенапряжений (опн)
- •9. Молниезащита подстанций
- •9.1. Защита изоляции электрооборудования подстанций от прямых ударов молнии
- •9.2. Распространение волн перенапряжений вдоль проводов
- •9.3. Параметры импульсов перенапряжений, набегающих на подстанцию
- •9.4. Защита подстанций от набегающих импульсов грозовых перенапряжений. Защищенный подход, его назначение и схема
- •9.5. Допустимые напряжения на защищаемой изоляции оборудования
- •9.6. Эффективность защиты изоляции электрооборудования подстанции
- •10. Воздействие внутренних перенапряжений на изоляцию воздушных линий и распределительных устройств
- •10.1. Общая характеристика внутренних перенапряжений
- •10.2. Перенапряжения установившегося режима
- •10.2.1. Повышение напряжения в конце разомкнутой линии за счет емкостного эффекта линии
- •10.2.2. Установившиеся перенапряжения при коротких замыканиях
- •10.2.3. Феррорезонансные перенапряжения
- •10.3. Коммутационные перенапряжения
- •10.3.1. Отключение ненагруженного трансформатора
- •10.3.2. Отключение конденсаторов
- •10.3.3. Отключение ненагруженных линий
- •10.3.4. Включение разомкнутой линии
- •10.3.5. Отключение больших токов
- •10.3.6. Перенапряжения при автоматическом повторном включении (апв)
- •10.3.7. Перенапряжения при перемежающихся замыканиях на землю
- •10.4. Ограничение внутренних перенапряжений
- •10.5. Допустимые значения коммутационных перенапряжений
10.3.2. Отключение конденсаторов
До отключения напряжение на батареи конденсаторов
,
где
– собственная частота схемы, а L
– индуктивность источника. Обычно
,
тогда
.
Сразу после отключения напряжение на
емкости не меняется. Если отключение
происходит в момент максимума напряжения,
то оно сохраняет свое максимальное
значение
.
Рис. 6. Напряжение на емкости при повторных
зажиганиях дуги
Разность
представляет собой восстанавливающееся
напряжение на выключателе, которое
через полпериода достигает значения
.
После обрыва тока электрическая прочность межконтактного промежутка возрастает постепенно в связи с расхождением контактов. Если восстанавливающееся напряжение между контактами окажется выше, чем прочность межконтактного промежутка, то возникает пробой промежутка, т. е. повторное включение цепи. Следующий обрыв тока может произойти при первом прохождении тока через нулевое значение. Затем появление большого восстанавливающегося напряжения может опять вызвать пробой промежутка и т. д., т. е. коммутация отключения может представлять собой серию чередующихся отключений и включений, происходящих до тех пор, пока при полном расхождении контактов дуга окончательно не оборвется.
Если бы повторные зажигания дуги в выключателе продолжались неограниченно долго, то происходило бы непрерывное возрастание перенапряжения.
10.3.3. Отключение ненагруженных линий
Физический процесс при отключении ненагруженных линий имеет тот же характер, что и при отключении сосредоточенных емкостей, однако обладает своими особенностями. В линиях СВН большой длины проявляется емкостный эффект и потому остающееся на линии после отключения напряжение может быть больше, чем амплитуда ЭДС источника.
Кроме того, при повторном зажигании дуги в выключателе возникает ряд свободных составляющих. Происходит увеличение амплитуды первой свободной составляющей по сравнению со случаем простого колебательного контура, а многократные отражения волн от индуктивности источника и от разомкнутого конца линии могут привести к дополнительному увеличению максимального значения перенапряжений.
10.3.4. Включение разомкнутой линии
Возникающий при подключении линии к шинам станции или подстанции переходный процесс можно рассмотреть, пользуясь схемой рис. 7. Разомкнутая линия длиной подключается к источнику синусоидальной ЭДС с внутренней индуктивностью Lи.
При этом возникает вынужденная
составляющая напряжения
,
соответствует установившемуся значению,
и свободные составляющие
(k
– порядок гармоники вынужденной
составляющей). Максимальное напряжение
при этом будет в конце линии.
Рис. 7. Подключение разомкнутой линии
к источнику
На рис. 8 приведены кривая
напряжения в конце линии и ее
составляющие. Максимальные значения
вынужденной и первых двух свободных
составляющих могут совпадать, что и
наблюдается в приведенном случае в
момент времени
:
.
При этом ударный коэффициент
.
Рис. 8. Напряжение
1 – вынужденная составляющая; 2 – первая
гармоника свободной составляющей; 3 –
вторая гармоника свободной составляющей
в конце разомкнутой линии и его
составляющие