
- •1.Жизнь как открытая биологическая система , основные свойства живого.
- •2.Неклеточные и клеточные формы жизни. Основные крупные систематические единицы живого : империи, над царства и царства.
- •3.Характеристика уровней организации живого. Элементарная единица и элементарное явление на каждом уровне организации живого. Уровни организации живого:
- •4.Формы клеточной организации живого. Особенности строения и жизнедеятельности про- и эукариот.
- •1.Теории возникновения клеточной организации в процессе эволюции (симбиотическая и инвагинационнная)
- •2.Особенности структурно-функциональной организации поверхностного аппарата клетки (плазмолеммы)
- •3.Транспорт веществ через мембрану (активный и пассивный транспорт)
- •5.Особенности структурно-функциональной организации цитоплазмы
- •6. Морфо-функциональная характеристика органоидов эукариотической клетки
- •7.Включения, их классификация и значения.
- •8.Клетки растений и животных отнесены к царству эукариот. Они имеют ряд сходств и различий.
- •1.Химический состав клетки: макро-, микро-, и ультрамикроэлементы, их значение в жизни клетки.
- •2.Строение и функции неорганических веществ клетки.
- •4. Особенности организации молекул днк.
- •5.Репликация днк
- •16. Особенности организации молекулы рнк, и ее виды и роль в реализации наследственной информации.
- •7. Строение и функции атф.
- •8. Этапы энергетического обмена в клетке.
- •1.Жизн. Цикл клетки, его периодизация
- •2. Химический состав хромосом эукариотической клетки.
- •3.Структурная организация хромосом
- •4 .Строение метафазной хромосомы
- •23. Митоз(разделительная фаза ), фазы митоза . Биологическое значение митоза.
2.Особенности структурно-функциональной организации поверхностного аппарата клетки (плазмолеммы)
Основу мембран составляет билипидный слой, но белки в нем расположены отдельными молекулами и комплексами, т.е. мозаично.В частности, молекулы интегральных белков могут пересекать билипидный слой, полуинтегральных - частично погружаться в него, а периферических. Надмембранный комплекс поверхностного аппарата клеток характеризуется многообразием строения. У прокариот надмембранный комплекс в большинстве случаев представлен клеточной стенкой различной толщины, основу которой составляет сложный гликопротеин муреин. У целого ряда эубактерий наружная часть надмембранного комплекса состоит из еще одной мембраны с большим содержанием липополисахаридов. У эукариот универсальным компонентом надмембранного комплекса являются углеводы - компоненты гликолипидов и гликопротеинов плазмалеммы. Благодаря этому его исходно называли гликокаликсом. Кроме углеводов, в состав гликокаликса относят периферические белки над билипидным слоем. Более сложные варианты надмембранного комплекса встречаются у растений грибов и членистоногих Субмембранный комплекс характерен только для эукариотических клеток. Он состоит из разнообразных белковых нитевидных структур: тонких фибрилл, микрофибрилл, скелетных фибрилл и микротрубочек. Они связаны друг с другом белками и формируют опорно-сократительный аппарат клетки. Субмембранный комплекс взаимодействует с белками плазмалеммы, которые, в свою очередь, связаны с надмембранным комплексом. В результате ПАК представляет собой структурно целостную систему. Это позволяет ему выполнять важные для клетки функции: изолирующую, транспортную, каталитическую, рецепторно-сигнальную и контактную.
3.Транспорт веществ через мембрану (активный и пассивный транспорт)
Различают следующие способы транспорта веществ:
пассивный транспорт - способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;
активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);
везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз - транспорт веществ в клетку, и экзоцитоз - транспорт веществ из клетки.
В свою очередь эндоцитоз подразделяется на:
фагоцитоз - захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);
пиноцитоз - перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется на несколько фаз:
адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;
поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков - фагосомы и передвижения ее в гиалоплазму
Пассивный транспорт — транспорт веществ по градиенту концентрации не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.
Активный транспорт — это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении. Источником энергии для активного транспорта служит АТФ — соединение, образующееся в процессе дыхания и выполняющее в клетке роль носителя энергии. Поэтому в отсутствие дыхания активный транспорт идти не может.
4. Структурные элементы интерфазного ядра Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.
Классификация структурных элементов интерфазного ядра:
хроматин;
ядрышко;
кариоплазма;
кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:
эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.
Ядрышко - сферическое образование хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.
Микроскопически в ядрышке различают:
фибриллярный компонент - локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
гранулярный компонент - локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.
В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.
Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.
При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Кариолемма (нуклеолемма) - ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
Кариолемма состоит из двух билипидных мембран - внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством.