- •Курс лекций
- •Основные термины и определения
- •Вопрос 2. Задачи системы контроля и диагностирования
- •Вопрос 3. Условия внедрения системы контроля и диагностирования ат
- •Теоретические основы технической диагностики
- •Лекция 2. Вероятностно-статистические методы распознавания Вопрос 1. Метод Байеса
- •Вопрос 2. Методы минимального риска
- •Лекция 3. Метрические методы распознавания
- •Вопрос 1. Метод эталонов
- •Вопрос 2. Метод минимального расстояния до множества
- •Лекция 4. Метод разделения в пространстве признаков. Логические методы Вопрос 1. Метод разделения в пространстве признаков
- •Вопрос 2. Логические методы
- •Вопрос 2. Природа изменения физико-механических характеристик металлов под нагрузкой
- •Лекция 6. Образование и развитие трещин при работе конструкций ат Вопрос 1. Образование трещин при работе конструкций ат
- •Вопрос 2. Развитие трещин при работе конструкций ат
- •Лекция 7. Повреждаемость от длительно приложенных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование повреждений при длительном статическом нагружении
- •Лекция 8. Повреждаемость от повторно-переменных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование усталостных повреждений
- •Вопрос 3. Повреждаемость при термоусталости
- •Лекция 9. Повреждаемость при изнашивании
- •Вопрос 1. Изнашивание при трении скольжения
- •Вопрос 2. Изнашивание при трении качения
- •Вопрос 3. Газоабразивное изнашивание
- •Лекция 10. Повреждаемость от воздействия окружающей среды
- •Вопрос 1. Процесс образования коррозии
- •Вопрос 2. Особенности коррозионной повреждаемости авиационных конструкций
- •Основные выводы
- •Вопрос 2. Возникновение и оценка диагностической информации
- •Лекция 12. Контроль технического состояния вс в полете Вопрос 1. Зависимость безопасности полета от контроля состояния ат
- •Вопрос 2. Общая структура бортового контроля
- •Лекция 13. Диагностирование ат при то и ремонте Вопрос 1. Диагностирование ат при то
- •Вопрос 2. Диагностирование ат при ремонте
- •Диагностирование элементов авиационных конструкций Лекция 14. Методы неразрушающего контроля
- •Вопрос 1. Акустический вид нк
- •Вопрос 2. Визуально-оптический вид нк
- •Лекция 15. Магнитные и капиллярные методы неразрушающего контроля Вопрос 1. Магнитный вид нк
- •Вопрос 2. Капиллярный вид нк
- •Лекция 16. Вихретоковые и лучевые методы неразрушающего контроля Вопрос 1. Вихретоковый вид нк
- •Вопрос 2. Лучевой вид нк
- •Лекция 17. Методы неразрушающего контроля Вопрос 1. Методы течеискания
- •Вопрос 2. Другие виды неразрушающего контроля
- •Вопрос 2. Диагностирование систем вс
- •Лекция 19. Диагностирование авиационных двигателей Вопрос 1. Диагностирование по накоплению продуктов износа
- •Вопрос 2. Вибродиагностирование двигателей
- •Вопрос 3. Диагностирование по термогазодинамическим параметрам
- •Вопрос 4. Параметрическое диагностирование
- •Основные выводы
- •Вопрос 2. Автоматизированные информационно-диагностические системы
- •Вопрос 3. Формирование потоков информации
- •Вопрос 1. Задачи лаборатории диагностирования
- •Вопрос 2. Состав лаборатории надежности и диагностики
- •Литература
- •Учебное издание
- •Кухарчук Игорь
- •220096, Г. Минск, ул. Уборевича, 77
Вопрос 2. Логические методы
Логические методы основаны на установлении логических связей между признаками и состояниями объектов, поэтому будут рассмотрены только простые (качественные) признаки, для которых возможны лишь два значения (например 0 и 1). Точно также и состояния технической системы (диагнозы) в рассматриваемых методах могут иметь только два значения (наличие и отсутствие). Два значения признака или состояния системы могут быть выражены любыми двумя символами («да» – «нет», «ложь» – «истина», 0 – 1).
Переменные величины или функции, принимающие только два значения (0 и 1), называются логическими или булевскими. Исследованием таких переменных и функций занимается математическая логика, имеющая обширные приложения во многих технических проблемах (релейные системы, теория ЭВМ и автоматов и др.). Применительно к задачам распознавания (диагностике) методы математической логики стали использоваться после работ Р. Ледла. Детерминистское описание с помощью двоичных переменных, характерное для логических методов распознавания, является приближенной моделью реальной ситуации. Однако во многих задачах логические методы пригодны для начальных этапов распознавания. Весьма перспективны методы математической логики для второго направления технической диагностики – поиска и локализации неисправностей технических систем
ЛИТЕРАТУРА
1. И.А.Биргер. Техническая диагностика. – М.: Машиностроение, 1978.
2. В.А. Пивоваров. Повреждаемость и диагностирование авиационных конструкций. – М.: Транспорт, 1994
******************************************************************
TEMA 3
Повреждаемость авиационных
конструкций при воздействии
рабочих нагрузок
Лекция 5. Изменение физико-механических характеристик
металлических конструкций в процессе эксплуатации
Вопрос 1. Оценка материалов по их физико-механическим характеристикам
Абсолютное большинство элементов авиационных конструкций изготовлено из металлов. Различные виды рабочих нагрузок, воздействуя на металлы более или менее длительное время, приводят к снижению их несущей способности (выработке ресурса) и разрушению. Этот момент может сопровождаться как внешними признаками (недопустимый износ, коррозия), так и внутренними, скрытыми превращениями в структуре металлов.
Обобщенную оценку состояния металлов на различных стадиях работы можно сделать с помощью измерения их физико-механических характеристик при механических испытаниях, которые проводят как в лабораторных, так и в производственных условиях.
При оценке металлов по результатам механических испытаний на образцах обычно предполагают наличие определенной связи (количественной и качественной) между механическими свойствами и поведением образцов металла при смоделированных процессах нагружения и деформации.
Основной причиной расхождения между результатами лабораторных испытаний образцов и элементов конструкций является различие между условиями деформации образца и условиями работы конкретных элементов конструкций. Это различие состоит в следующем :
напряженное состояние при одном и том же способе нагружения у образца и детали сложной формы будет существенно различаться (разная ориентация тензоров напряжений), так как полностью воссоздать при лабораторных испытаниях образцов сложное напряженное состояние, как правило, невозможно;
при механических испытаниях образец переходит в пластическую область целиком, а в условиях эксплуатации пластическая деформация реального элемента резко локализована;
в большинстве случаев реальные элементы конструкции испытывают многокомпонентное нагружение, что также сказывается на ее несущей способности;
в условиях эксплуатации нагружению подвергаются элементы, отличающиеся, хотя и незначительно, формой, размерами и технологией изготовления. Вероятность появления различных отклонений свойств натурных элементов значительно больше, чем при испытании небольшого числа образцов.
Рассмотрим критериальные оценки конструкционной прочности металлов при следующих видах нагружения: а – кратковременном статическом при нормальной температуре (схожие условия испытывают стойки шасси); б – длительном статическом при повышенной температуре (характерно для дисков и лопаток турбин); в – повторно-переменном при нормальной температуре (рабочие лопатки компрессора).
При кратковременном статическом нагружении конструкции ее разрушение носит обычно внезапный характер. Из курса "Сопротивление материалов" известны следующие критерии внезапной потери несущей способности материалов при воздействии повышенных нагрузок:
максимальных
главных напряжений. Полагают, что
разрушение наступает при условии
;
максимальных
касательных напряжений (
);
накопленной энергии деформирования (критерием разрушения является фиксированная энергия деформирования, накопленная от начала появления необратимых деформаций материала до предельного напряжения);
энергии сдвиговой деформации (разрушение наступает, когда энергия сдвиговой деформации в сложном напряженном состоянии станет равной энергии деформации при одноосном растяжении);
максимальных
главных деформаций (критерий Сен-Венана),
Максимальная деформация, соответствующая
разрушению, связана с напряжениями,
ориентированными по трем осям (
),
модулем упругости Е
и коэффициентом Пуассона v
соотношением
.
На практике действие перечисленных критериев можно наблюдать например, при недопустимо грубой посадке самолета (ударные нагрузки на элементы шасси, силовые консоли крыла и т. п.).
Известна
тесная корреляция, например, между
относительным сужением
и твердостью по Бринеллю НВ. Зная опасные
зоны конструкции (обычно это места
расположения концентраторов напряжений),
а также пределы изменений НВ, можно с
помощью переносного твердомера
диагностировать приближение несущих
свойств элементов шасси к предотказному
состоянию.
При
воздействии длительно приложенных
статических нагрузок и повышенных
температур оценивают, по возможности,
две группы характеристик: предел
длительной прочности
и максимальную деформацию (
).
Для дисков турбин, например, наиболее
удобной для измерения величиной является
пластическая деформация, максимальное
значение которой можно зафиксировать
по характерному скрежету о лабиринтные
уплотнения статора при ручной прокрутке
ротора газотурбинного двигателя (ГТД).
У рабочих лопаток турбины о недопустимых
деформациях может свидетельствовать
наличие "шейки" (утонения) на
профильной части.
Для того чтобы оценить степень усталости материала, можно сделать ряд косвенных проверок (оценить однородность поверхностного слоя, степень упрочнения, распределение остаточных напряжений и т. д.) или провести усталостные испытания, по результатам которых принимать решение о возможности дальнейшей эксплуатации конструкции (в нашем случае – лопаток компрессора).
Использование наиболее информативных критериев позволяет достовернее выделить состояние материала из заранее известного множества состояний. Это достигается путем аналитических оценок информации, вносимой каждым из параметров, по отношению к какому-то конкретному состоянию.
