
- •Курс лекций
- •Основные термины и определения
- •Вопрос 2. Задачи системы контроля и диагностирования
- •Вопрос 3. Условия внедрения системы контроля и диагностирования ат
- •Теоретические основы технической диагностики
- •Лекция 2. Вероятностно-статистические методы распознавания Вопрос 1. Метод Байеса
- •Вопрос 2. Методы минимального риска
- •Лекция 3. Метрические методы распознавания
- •Вопрос 1. Метод эталонов
- •Вопрос 2. Метод минимального расстояния до множества
- •Лекция 4. Метод разделения в пространстве признаков. Логические методы Вопрос 1. Метод разделения в пространстве признаков
- •Вопрос 2. Логические методы
- •Вопрос 2. Природа изменения физико-механических характеристик металлов под нагрузкой
- •Лекция 6. Образование и развитие трещин при работе конструкций ат Вопрос 1. Образование трещин при работе конструкций ат
- •Вопрос 2. Развитие трещин при работе конструкций ат
- •Лекция 7. Повреждаемость от длительно приложенных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование повреждений при длительном статическом нагружении
- •Лекция 8. Повреждаемость от повторно-переменных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование усталостных повреждений
- •Вопрос 3. Повреждаемость при термоусталости
- •Лекция 9. Повреждаемость при изнашивании
- •Вопрос 1. Изнашивание при трении скольжения
- •Вопрос 2. Изнашивание при трении качения
- •Вопрос 3. Газоабразивное изнашивание
- •Лекция 10. Повреждаемость от воздействия окружающей среды
- •Вопрос 1. Процесс образования коррозии
- •Вопрос 2. Особенности коррозионной повреждаемости авиационных конструкций
- •Основные выводы
- •Вопрос 2. Возникновение и оценка диагностической информации
- •Лекция 12. Контроль технического состояния вс в полете Вопрос 1. Зависимость безопасности полета от контроля состояния ат
- •Вопрос 2. Общая структура бортового контроля
- •Лекция 13. Диагностирование ат при то и ремонте Вопрос 1. Диагностирование ат при то
- •Вопрос 2. Диагностирование ат при ремонте
- •Диагностирование элементов авиационных конструкций Лекция 14. Методы неразрушающего контроля
- •Вопрос 1. Акустический вид нк
- •Вопрос 2. Визуально-оптический вид нк
- •Лекция 15. Магнитные и капиллярные методы неразрушающего контроля Вопрос 1. Магнитный вид нк
- •Вопрос 2. Капиллярный вид нк
- •Лекция 16. Вихретоковые и лучевые методы неразрушающего контроля Вопрос 1. Вихретоковый вид нк
- •Вопрос 2. Лучевой вид нк
- •Лекция 17. Методы неразрушающего контроля Вопрос 1. Методы течеискания
- •Вопрос 2. Другие виды неразрушающего контроля
- •Вопрос 2. Диагностирование систем вс
- •Лекция 19. Диагностирование авиационных двигателей Вопрос 1. Диагностирование по накоплению продуктов износа
- •Вопрос 2. Вибродиагностирование двигателей
- •Вопрос 3. Диагностирование по термогазодинамическим параметрам
- •Вопрос 4. Параметрическое диагностирование
- •Основные выводы
- •Вопрос 2. Автоматизированные информационно-диагностические системы
- •Вопрос 3. Формирование потоков информации
- •Вопрос 1. Задачи лаборатории диагностирования
- •Вопрос 2. Состав лаборатории надежности и диагностики
- •Литература
- •Учебное издание
- •Кухарчук Игорь
- •220096, Г. Минск, ул. Уборевича, 77
Вопрос 2. Суммирование повреждений при длительном статическом нагружении
Существует
несколько теоретических гипотез,
описывающих зависимость скорости
пластической деформации
от напряжений
,
деформации
,
времени
и температуры
:
Гипотеза течения, описывающая процесс ползучести зависимостью
. Эта теория имеет некоторое подтверждение для высоких уровней надежности (рис.18, кривая 1).
Гипотеза линейного суммирования повреждений исходит из того, что существует зависимость
, отображающая старение в чистом виде. Гипотеза линейного суммирования повреждений довольно хорошо подтверждается экспериментом при слабом или медленном изменениях напряжений в элементах конструкции в процессе работы.
Гипотеза нелинейного суммирования повреждений предполагает, что существует зависимость
, которая устанавливает связь между напряжением , суммарной накопленной пластической деформацией и ее скоростью .
Существенным моментом в гипотезе нелинейного суммирования повреждений является так называемая наследственность или своеобразная память материала на остаточные деформации.
ЛИТЕРАТУРА
В.А. Пивоваров. Повреждаемость и диагностирование авиационных конструкций. – М.: Транспорт, 1994.
********************************************************************
Лекция 8. Повреждаемость от повторно-переменных нагрузок Вопрос 1. Механизм развития повреждаемости
Повреждение конструкции повторно-переменными нагрузками приводит к усталости их материала.
Усталость является сложным процессом накопления повреждений под действием повторно-переменных напряжений, приводящих к образованию трещин и разрушению конструкции. Возникновению магистральных усталостных трещин предшествуют микротрещины в местах концентрации дислокаций, плотность которых превышает критическую.
Усталостное, прогрессирующее во времени разрушение можно описать последовательностью случайных процессов:
накопление первичных повреждений (скопление дислокаций);
формирование микротрещин и слияния их в макротрещины;
распространение магистральной усталостной трещины;
статического долома.
Кинетика и механизм каждого из перечисленных процессов усталостного разрушения определяются комплексом внешних нагрузок, характером их изменения во времени и повреждаемостью самого материала.
Различают знакопеременность и повторяемость нагружения (рис.19). Большая часть АК работает при знакопеременном нагружении.
Рис.19. Типичные циклы повторно-переменного нагружения:
а – симметричный; б – пульсирующий; в – асимметричный знакопеременный;
г – асимметричный знакопостоянный
Опасность усталостного разрушения по сравнению с длительным статическим заключается:
– в более низком разрушающем напряжении (до половины статической прочности и ниже);
– в более резком влиянии на прочность конструктивных, технологических и коррозионных факторов.
Кривые усталости (кривые Велера) отражают зависимость усталостной долговечности от числа циклов N (рис.20). Они бывают двух типов: с выраженным горизонтальным участком (кривая 1) и монотонным снижением (кривая 2). Последнее характерно для многих сплавов и цветных металлов.
Рис.20. Кривые усталости металлов:
I – условный предел выносливости
Условным
пределом выносливости считают наибольшее
значение максимального напряжения
цикла, не вызывающее разрушения
практически при очень большом числе
циклов (
и более).
Склонность к образованию трещин у поврежденных повторно-переменными нагрузками элементов АК зависит (при фиксированном уровне напряжений) от макро- и микрогеометрии поверхности, от остаточной напряженности поверхности, от состояния макро- , микро- и субмикроструктуры материала.
Существенного влияния на макро- и микрогеометрию поверхности элементов АК наработка оказать не может. Последние два фактора имеют прямое отношение к накоплению усталостных повреждений при работе.
Процесс усталостной повреждаемости в целом поддается управлению. К управляющим факторам относят ряд конструктивных мер по увеличению поперечных сечений элементов, отстройку от резонансных частот колебаний, устранение конструктивных концентраторов напряжений. Положительно сказывается и совершенство технологического процесса изготовления.