
- •Курс лекций
- •Основные термины и определения
- •Вопрос 2. Задачи системы контроля и диагностирования
- •Вопрос 3. Условия внедрения системы контроля и диагностирования ат
- •Теоретические основы технической диагностики
- •Лекция 2. Вероятностно-статистические методы распознавания Вопрос 1. Метод Байеса
- •Вопрос 2. Методы минимального риска
- •Лекция 3. Метрические методы распознавания
- •Вопрос 1. Метод эталонов
- •Вопрос 2. Метод минимального расстояния до множества
- •Лекция 4. Метод разделения в пространстве признаков. Логические методы Вопрос 1. Метод разделения в пространстве признаков
- •Вопрос 2. Логические методы
- •Вопрос 2. Природа изменения физико-механических характеристик металлов под нагрузкой
- •Лекция 6. Образование и развитие трещин при работе конструкций ат Вопрос 1. Образование трещин при работе конструкций ат
- •Вопрос 2. Развитие трещин при работе конструкций ат
- •Лекция 7. Повреждаемость от длительно приложенных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование повреждений при длительном статическом нагружении
- •Лекция 8. Повреждаемость от повторно-переменных нагрузок Вопрос 1. Механизм развития повреждаемости
- •Вопрос 2. Суммирование усталостных повреждений
- •Вопрос 3. Повреждаемость при термоусталости
- •Лекция 9. Повреждаемость при изнашивании
- •Вопрос 1. Изнашивание при трении скольжения
- •Вопрос 2. Изнашивание при трении качения
- •Вопрос 3. Газоабразивное изнашивание
- •Лекция 10. Повреждаемость от воздействия окружающей среды
- •Вопрос 1. Процесс образования коррозии
- •Вопрос 2. Особенности коррозионной повреждаемости авиационных конструкций
- •Основные выводы
- •Вопрос 2. Возникновение и оценка диагностической информации
- •Лекция 12. Контроль технического состояния вс в полете Вопрос 1. Зависимость безопасности полета от контроля состояния ат
- •Вопрос 2. Общая структура бортового контроля
- •Лекция 13. Диагностирование ат при то и ремонте Вопрос 1. Диагностирование ат при то
- •Вопрос 2. Диагностирование ат при ремонте
- •Диагностирование элементов авиационных конструкций Лекция 14. Методы неразрушающего контроля
- •Вопрос 1. Акустический вид нк
- •Вопрос 2. Визуально-оптический вид нк
- •Лекция 15. Магнитные и капиллярные методы неразрушающего контроля Вопрос 1. Магнитный вид нк
- •Вопрос 2. Капиллярный вид нк
- •Лекция 16. Вихретоковые и лучевые методы неразрушающего контроля Вопрос 1. Вихретоковый вид нк
- •Вопрос 2. Лучевой вид нк
- •Лекция 17. Методы неразрушающего контроля Вопрос 1. Методы течеискания
- •Вопрос 2. Другие виды неразрушающего контроля
- •Вопрос 2. Диагностирование систем вс
- •Лекция 19. Диагностирование авиационных двигателей Вопрос 1. Диагностирование по накоплению продуктов износа
- •Вопрос 2. Вибродиагностирование двигателей
- •Вопрос 3. Диагностирование по термогазодинамическим параметрам
- •Вопрос 4. Параметрическое диагностирование
- •Основные выводы
- •Вопрос 2. Автоматизированные информационно-диагностические системы
- •Вопрос 3. Формирование потоков информации
- •Вопрос 1. Задачи лаборатории диагностирования
- •Вопрос 2. Состав лаборатории надежности и диагностики
- •Литература
- •Учебное издание
- •Кухарчук Игорь
- •220096, Г. Минск, ул. Уборевича, 77
МИНИСТЕРСТВО ТРАНСПОРТА И КОММУНИКАЦИЙ
РЕСПУБЛИКИ БЕЛАРУСЬ
ДЕПАРТАМЕНТ ПО АВИАЦИИ
МИНСКИЙ ГОСУДАРСТВЕННЫЙ ВЫСШИЙ
АВИАЦИОННЫЙ КОЛЛЕДЖ
ДИАГНОСТИКА
АВИАЦИОННОЙ ТЕХНИКИ
Курс лекций
для студентов специальности
«Техническая эксплуатация воздушных судов и двигателей»
Минск
2008
Составитель
Кухарчук И.Г.
преподаватель, кафедры технической эксплуатации
воздушных судов и двигателей
Рецензент
Рипинский А.И.,
заведующий кафедрой технической эксплуатации
воздушных судов и двигателей, кандидат технических наук
Одобрено и рекомендовано к изданию научно-методическим советом МГВАК (протокол от ___ _________200__г.№___).
Курс лекций предназначен для студентов дневной и заочной форм обучения, изучающих дисциплину «Диагностика летательных аппаратов и авиадвигателей».
Пособие разработано на кафедре ТЭВСиД Минского государственного высшего авиационного колледжа и рекомендовано для использования в учебном процессе.
© МГВАК, 2008
ВВЕДЕНИЕ
В процессе эксплуатации авиационной техники ее узлы и агрегаты подвергаются воздействию широкого спектра нагрузок и других повреждающих факторов. Такое воздействие приводит к ухудшению технического состояния воздушных судов (ВС) и авиационных двигателей (АД): повышается удельный расход топлива, растет температура газа перед турбиной, увеличиваются зазоры в механических системах, узлах.
Объективное определение технического состояния (ТС) и отслеживание его изменения в процессе длительной эксплуатации требуют измерения, регистрации и последующей обработки большого количества параметров, характеризующих работоспособность узлов и агрегатов.
Процесс диагностирования может быть осуществлен при наличии соответствующих методов, средств, оборудования. При этом особое значение приобретают вопросы выбора и обоснования диагностических параметров, используемых для оценки состояния изделий. Выбор таких параметров представляет собой сложную задачу, для решения которой требуются большие материальные затраты. Основой методики выбора параметров в настоящее время служат модели объектов диагностирования, необходимые для создания автоматизированных систем диагностирования, широкого использования вычислительной техники в процессе контроля состояния изделий. В результате этого достигается значительное снижение материальных затрат на техническое обслуживание.
Приемлемого уровня надежности первых поколений ВС и АД достигали на статической основе путем ограничения их ресурса малыми величинами, при которых вероятность безотказной работы сохраняет высокие значения (гарантийные ресурсы для двигателей – 200…300ч).
Необходимость обеспечения безопасности полетов требует разработки системы раннего обнаружения развивающихся неисправностей, с тем чтобы исключить отказы в полете. В качестве такой системы выступает развитая система диагностирования, позволяющая обнаруживать неисправности с упреждением, дающим возможность прогнозировать с определенной вероятностью время достижения предельного состояния.
В общей теории диагностики принято различать понятия генез, диагноз и прогнозирование. Однако при проведении контроля ТС авиационной техники (АТ) разделение понятий диагноз и прогноз весьма условно. Если определяется ТС изделия в данный момент, но не может быть дан прогноз его состояния хотя бы на ближайший полет, то такой диагноз практического смысла в эксплуатации не имеет. Поэтому в понятие диагностирование необходимо включить прогнозирование ТС объекта.