Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка Физика 3 семестр Кафедра ОТФ .docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
9.17 Mб
Скачать

Решение

Параллельные токи одинакового направления притягиваются друг к другу, т. е. второй проводник с током притягивается к первому силой Ампера . Чтобы его отодвинуть от первого проводника, нужно приложить внешнюю силу, незначительно превышающую силу притяжения проводников: . Работа этой внешней силы

(1)

Дано

;

;

;

.

Рис. 66

Найдем силу Ампера – силу магнитного взаимодействия проводников с током, как силу, с которой магнитное поле первого проводника действует на ток во втором проводнике:

(2)

В уравнении (2) суммируются элементарные силы , действующие на элементы тока , расположенные на всей длине второго проводника с током. Направление сил определяем по правилу левой руки, размещая ладонь в плоскости рисунка (рис. 66), так как вектор магнитной индукции перпендикулярен плоскости рисунка (он направлен «к нам»). Силы , действующие на элементы тока , сонаправлены, поэтому можем складывать их модули:

(3)

Здесь , так как вектор ; – магнитная индукция поля, созданного прямым током , она определяется формулой

, (4)

где – расстояние от проводника с током до точки, в которой определяется индукция магнитного поля.

Подставим величину в подинтегральное выражение (3) и выполним интегрирование, отметив, что расстояние всех элементов тока второго проводника от первого одинаково, так как проводники параллельные:

(5)

Сила Ампера, действующая на единицу длины проводника, в соответствии с формулой (5), представится следующим выражением:

(6)

Согласно полученной формуле, эта сила уменьшается с увеличением расстояния между проводниками, т. е. имеем дело с работой переменной силы, которая определяется, как сумма элементарных работ, интегралом (1). Работу на единицу длины проводника найдем, подставляя силу по формуле (6) в подинтегральное выражение (1):

(7)

Вычислим работу, которую совершает внешняя сила при удалении от первого проводника с током второго проводника с током на единицу его длины, принимая, что магнитная проницаемость воздуха :

.

Задача 36. Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода расположены вдоль линий . По проводнику протекает ток . Определите силу , действующую на проводник.

Дано Решение

;

;

.

С

,

.

,

А

О

.

Рис. 67

Выделим на полукольце элемент тока и определим направление действующей на него силы Ампера

(1)

Для этого используем правило левой руки, располагая ладонь в плоскости рисунка (рис. 67). Так как элементы тока кольцевого проводника имеют различную ориентацию, то векторы , перпендикулярные элементам тока , образуют «веер векторов» в плоскости полукольца. Для сложения таких векторов каждый элементарный вектор силы разложим на составляющие по осям :

(2)

Силу, действующую на весь проводник длины , находим, суммируя по всей длине полукольца векторы сил, действующих на элементы тока:

(3)

Покажем на рисунке вектор , действующий на элемент тока , расположенный симметрично элементу тока . По рисунку видно, что вектор , следовательно, они попарно компенсируются при суммировании и в результате этого Составляющие силы Ампера , действующие на все элементы тока, сонаправлены, поэтому векторное равенство (3) заменяем скалярным:

(4)

Здесь проекция силы (см. треугольник на рис. 67). Элементарная сила Ампера

, (5)

где – угол между векторами элемента тока и магнитной индукции ; по условию задачи , поэтому

Подставляя величину проекции силы в уравнение (4), перепишем его в следующем виде:

(6)

В подинтегральном выражении содержатся две переменные – элемент длины проводника и угол . Связь этих переменных находим из малого треугольника с гипотенузой (см. рис. 67): . Перейдем к переменной и запишем для нее пределы интегрирования. При сложении сил от всех элементов тока полукольца переменная изменяется от нуля до , где – радиус полукольца. Тогда интеграл (6) принимает следующий вид:

(7)

Вычислим модуль силы Ампера, действующей в магнитном поле на полукольцо с током:

Вектор , а величина , следовательно, сила Ампера направлена вдоль оси (см. рис. 67).

Задача 37. Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Вектор лежит в плоскости полукольца и перпендикулярен его диаметру (рис. 68). По проводнику течет ток . Определите силу , действующую на полукольцо.

Дано Решение

Рис. 68

Сделаем чертеж (см. рис. 68), на котором покажем элемент тока , лежащий в плоскости рисунка. Сила Ампера, действующая на данный элемент тока

(1)

Силу, действующую на все элементы тока полукольца, найдем, суммируя элементарные силы:

. (2)

Согласно векторному произведению (1), сила перпендикулярна элементу тока и магнитной индукции . Так как оба вектора лежат в плоскости рисунка, то вектор силы перпендикулярен плоскости рисунка и направлен «к нам». Для всех элементов тока векторы сонаправлены, следовательно, и вектор силы , действующей на полукольцо, также направлен перпендикулярно плоскости рисунка.

Модуль этого вектора находим, используя формулы (1) и (2):

(3)

Здесь – угол между векторами элемента тока и магнитной индукции (см. рис. 68). Подинтегральное выражение (3) содержит две переменные – элемент длины проводника и угол . Перейдем к одной переменной – к углу , заменяя . Пределы по этой переменной видны по рисунку (см. рис. 68). Суммируя силы по длине проводника, начинаем с первого элемента тока, для которого , и заканчиваем последним элементом тока, – для него . Соответственно, уравнение (3) принимает следующий вид:

.

Вычисляем силу, действующую на полукольцо с током в магнитном поле заданной ориентации: