
- •2.5. Натуральная мощность и пропускная способность лэп Натуральная мощность
- •Величины натуральной и наибольшей передаваемой мощности вл
- •Пропускная способность
- •2.6. Схемы замещения электрических сетей
- •2.7. Распределение потоков мощностей в радиально-магистральных сетях
- •2.8. Распределение мощностей в простейших замкнутых сетях Замкнутые сети
- •Определение потокораспределения в линии с двусторонним питанием при одинаковых напряжениях пунктов питания
- •Определение потокораспределения в линии с двусторонним питанием при различающихся напряжениях пунктов питания
- •Частные случаи расчета линии с двусторонним питанием
На диаграмме обозначены продольная и поперечная составляющие падения напряжения в линии U = U’ + jU’’.
Из диаграммы на рис. 2.7 следовало, что величина падения напряжения является характеристикой загрузки ЛЭП: |U| – пропорциональна току нагрузки. Другой характеристикой режима работы ЛЭП является потеря напряжения, которая вычисляется как разность модулей напряжений по концам линии U = U1 – U2 и в отличие от падения напряжения, которое есть векторная величина, является скалярной величиной.
На векторной диаграмме (рис. 2.8) потерю напряжения можно получить как разность отрезков U1 и U2. На вещественной оси отмечен отрезок, равный по величине U1, полученный с помощью проведения дуги соответствующего радиуса, и отрезок, равный потере напряжения U.
Особое значение
для характеристики загрузки линии
потеря напряжения имеет для линий, у
которых R и X близки друг к другу
или R > X, тогда потерю напряжения
приближенно можно принять равной
продольной составляющей падения
напряжения
.
Это относится к линиям низкого и среднего
напряжения, которые выполняются проводами
сечением 70 мм2 (для АС 70/11: r0
= 0,428 Ом/км, x0 = 0,432 Ом/км на 35 кВ)
и менее и с меньшими междуфазными
расстояниями, чем на высоком напряжении.
2.5. Натуральная мощность и пропускная способность лэп Натуральная мощность
Рассмотрим ЛЭП без потерь, для которой r0 = 0 и g0 = 0.
Выделим в ней отрезок единичной длины l с индуктивным сопротивлением x0l и емкостной проводимостью b0l. На этом участке имеют место потери и генерация реактивной мощности
(2.39)
Здесь QC не зависит от передаваемой мощности. Если принять Q = 0, то при некоторой активной мощности P будет иметь место равенство QL = QC. Мощность, передаваемую в этом режиме называют натуральной мощностью Pнат, а сам режим работы ЛЭП называют режимом передачи натуральной мощности. При U = Uном будем иметь
(2.40)
и
,
(2.41)
откуда
(2.42)
или
(2.43)
где
– волновое сопротивление линии.
В реальной линии, в которой r0 0 g0 0, потери активной мощности при Q = 0 будут наименьшими
(2.44)
а при P = Pнат линия будет работать с наибольшим КПД вследствие того, что линия находится на самобалансе реактивной мощности QL = QC – потери в линии компенсируются зарядной мощностью и в любой точке линии Q = 0. В случае, когда QL QC имеет место либо избыток зарядной мощности QC > QL, либо потери превышают зарядную мощность QL > QC, и тогда потери P увеличиваются и вследствие этого КПД линии ухудшается, как при P > Pнат, так и при P < Pнат.
Режим натуральной мощности является не только самым экономичным. Для линии без потерь можно обнаружить и другие его замечательные свойства, так, например, напряжение в начале линии по модулю оказывается равным напряжению в конце линии:
(2.45)
где
;
ZC
– волновое сопротивление линии; 0
– коэффициент фазы линии,
а U2
– совмещено с действительной осью
координат.
Из соотношения
следует, что равны по модулю не только
напряжения по концам линии, но и то, что
модуль напряжения в любой точке вдоль
линии является неизменной величиной:
,
где x –
расстояние от начала линии (x
= 0) до точки с координатой
x. Можно
показать, что для линии без потерь в
режиме натуральной мощности и ток вдоль
линии по модулю остается постоянной
величиной.
Такое свойство постоянства напряжения и тока вдоль линии в режиме натуральной мощности во многом снижает требования к оборудованию линии электропередачи и облегчает регулирование режимов ЭЭС.
Наличие активных параметров линии r0 и g0 несколько меняет идеальную картину, но при P2 = Pнат или P2 , близкой к натуральной, в линии приблизительно сохраняются свойства режима натуральной мощности.
В табл. 2.1 приведены численные значения натуральной мощности ВЛ некоторых напряжений. Натуральные мощности кабельных линий на порядок выше, чем у ВЛ.
Т а б л и ц а 2.1
Величины натуральной и наибольшей передаваемой мощности вл
Мощность |
Номинальное напряжение, кВ |
||
110 |
220 |
500 |
|
Натуральная |
30 |
120 |
900 |
Наибольшая* |
20…50 |
90…200 |
700…900 |
* Наибольшая мощность зависит от длины линии.
На практике невозможно обеспечить работу всех линий в режиме, близком к натуральному, но этого добиваются для отдельных линий, когда существует возможность регулировать передаваемую мощность за счет перераспределения мощностей в электрической сети и генерирования реактивной мощности в местах ее потребления.