
- •Д.А. Полещенко интегрированные системы проектирования и управления
- •220301.65 – Автоматизация технологических процессов и производств
- •Содержание
- •Лекция №1 введение. Проблематика построения ис
- •Интегрированная система управления — система реального времени
- •Основные понятия и классификация интегрированых систем
- •Функциональные подсистемы ис
- •Подсистема «Перспективное развитие».
- •Подсистема «Техническая подготовка производства».
- •Подсистема «Технико-экономического планирования».
- •Подсистема «управление реализацией и сбытом готовой продукции».
- •Подсистема «управление основным производством».
- •Подсистема «управление материально-техническим снабжением».
- •Подсистема «управление качеством продукции».
- •Подсистема «управление вспомогательным производством».
- •Подсистема «управление кадрами».
- •Подсистема «бухгалтерский учёт и анализ хозяйственной деятельности».
- •Обеспечивающие подсистемы ис
- •Подсистема «организационное обеспечение».
- •Подсистема «правовое обеспечение».
- •Подсистема «техническое обеспечение».
- •Подсистема «математическое обеспечение».
- •Подсистема «программное обеспечение».
- •Подсистема «информационное обеспечение».
- •Подсистема «лингвистическое обеспечение».
- •Подсистема «технологическое обеспечение».
- •Лекция №2 состав стадий и этапов канонического проектирования
- •Состав и содержание на предпроектной стадии создания иис
- •Состав и содержание работ на стадии техно-рабочего проектирования
- •Состав и содержание работ на стадиях внедрения, эксплуатации и сопровождения проекта
- •Лекция №3 основные понятия и особенности проектирования клиент-серверных экономических информационных систем
- •Файл – серверная архитектура
- •Двухуровневая клиент – серверная архитектура
- •Трёхуровневая клиент – серверная архитектура
- •Многоуровневая архитектура «клиент-сервер»
- •Лекция №4 иерархия уровней управления
- •Уровень erp-систем.
- •Уровень mes – систем.
- •Сферы применения erp- и mes – систем
- •Лекция №5 проблематика диспетчерского управления
- •Асу тп и диспетчерское управление этапы развития уровня асутп
- •Концепция scada
- •Компоненты систем контроля и управления и их назначение
- •Лекция №6 пути и инструментарий для разработки прикладного программного обеспечения
- •Критерии выбора scada-систем
- •Технические характеристики scada-систем
- •Открытость scada-систем
- •Стоимостным характеристики scada-систем
- •Эксплуатационные характеристики scada-систем
- •Лекция №7
- •Пакеты Powerpacks
- •Примеры экранных форм
- •Однопользовательский проект
- •Многопользовательский проект
- •Клиентский проект
- •Работа с проектами
- •Использование тегов
- •Tag Management (Управление тегами)
- •Теги процесса
- •Внутренние теги
- •Системные теги
- •Группы тегов
- •Создание экранов процесса
- •Работа с кадрами
- •Работа со слоями
- •Работа с объектами Объекты из Object Palette [Палитры объектов]
- •Свойства объекта
- •Окно "Object Properties [Свойства объекта]"
- •Закладка "Properties [Свойства]" в диалоговом окне "Object Properties [Свойства объекта]"
- •Стили шрифтов для отображения динамики и событий
- •Закладка "Events [События]" в диалоговом окне "Object Properties [Свойства объекта]"
- •Группы свойств и атрибуты
- •Компоненты экранных форм
- •Работа со стандартными объектами
- •Работа с интеллектуальными объектами
- •Работа с объектами Windows
- •Быстрое конфигурирование объектов
- •Работа с составными объектами
- •Работа с пользовательскими объектами
- •Краткое описание элементов управления WinCc и дополнительных элементов управления
- •Архивирование значений процесса в WinCc
- •Внешние и внутренние теги
- •Методы архивирования
- •Циклы и события
- •Циклическое архивирование значений процесса
- •Циклическое выборочное архивирование значений процесса
- •Управляемое процессом архивирование значений процесса
- •Вторичный архив (англ. Compressed archive)
- •Лекция №9 Распределённые системы автоматизации производства и технологических процессов
- •Модель iso/osi
- •Управление доступом с помощью протокола csma/cd
- •Лекция №10 Характеристики s7-200
- •Модули расширения (em)
- •Характеристики s7-300
- •Характеристики s7-400
- •Лекция №11
- •Плата микропамяти simatic (Micro Memory Card . Mmc)
- •Интерфейсы
- •Лекция №12
- •Лекция №13 циклическое исполнение программы. Время цикла. Время реакции. Прерывания циклической программы.
- •Что мы подразумеваем под "временем цикла"?
- •Модель квантов времени
- •Образ процесса
- •Процесс циклической обработки программы
- •Увеличение времени цикла
- •Различные времена циклов
- •Коммуникационная нагрузка
- •Воздействие на фактическое время цикла
- •Определение времени реакции
- •Кратчайшее время реакции
- •Длиннейшее время реакции
- •13.10. Вставка s7-блока
- •View for Block Types (Виды для соответствующих типов блоков):
- •Организационные блоки
- •Синхронные и асинхронные ошибки
- •Лекция №14 обработка аналоговых сигналов
- •Масштабирование аналоговых сигналов
- •Лекция №15
- •Вызов блока регулятора
- •Порядок конфигурирования блока, реализующего пи-закон регулирования:
- •Общий обзор битовых инструкций.
- •Xor : Логическая инструкция исключающее или.
- •Лекция №16 битовые логические инструкции ( триггеры, определение фронта рло/сигнала)
- •Блок move move : Передача значения
- •Лекция №17 Область памяти и компоненты таймера
- •S_pulse : Задание параметров и запуск таймера «Импульс»
- •S_pext : : Задание параметров и запуск таймера «Удлиненный импульс»
- •S_odt : Задание параметров и запуск таймера «Задержка включения»
- •S_odts : Задание параметров и запуск таймера «Задержка включения с памятью»
- •S_offdt : Задание параметров и запуск таймера «Задержка выключения»
- •Принцип работы счетчиков s_cud, s_cd, s_cu. Обзор инструкций счетчиков
- •S_cud : Назначение параметров и прямой/обратный счет
- •S_cu : Назначение параметров и прямой счет
- •S_cd :Обратный счет
- •Список литературы
- •Полещенко Дмитрий Александрович интегрированные системы проектирования и управления
Характеристики s7-400
• Мощный PLC для решения задач автоматизации среднего и верхнего уровней сложности.
• Ряд CPU различной производительности.
• Расширенный набор модулей.
• Возможно расширение до более, чем 300 модулей.
• Соединительная шина встроена в модули (Р и К-шины).
• Работа в сети с - многоточечным интерфейсом (MPI),
- PROFIBUS или
- Industrial Ethernet.
• Централизованное соединение с программатором и ПК с доступом ко всем модулям.
• Нет ограничений на использование слотов.
• Многопроцессорная работа (до четырех CPU в центральной стойке).
Стоимость CPU от 400 € до 11016 €. В/В дискретный до 700 €, аналоговый до 2000 €.
UR 1 / UR 2
UR1/UR2 могут использоваться как центральная стойка и как стойка расширения. У них есть параллельная периферийная шина (шина P) для высокоскоростной передачи I/O сигналов (1.5 мкс/ байт) и критического ко времени доступа к данным сигнального модуля.
Кроме того, стойки UR1 (18 слотов) / UR2 (9 слотов) имеют мощный последовательный канал связи посредством коммуникационной шины (шина K) для высокоскоростного обмена данными (10.5 мбит/с) между станциями шины K (S7/M7 CPU S7/M7, FM, CP ).
Благодаря разделению шин P и K, каждой задаче назначена своя собственная шинная система. Сигналы управления и данные используют свои отдельные магистрали данных. Поэтому коммуникационные задачи не замедляют управляющие.
CR2
Сегментированная стойка CR2 отличается тем, что имеет раздельные шины I/O для двух сегментов – соответственно с 10 и 8 слотами. Для каждого сегмента может использоваться один CPU. Оба CPU являются ведущими устройствами в своем сегменте шины P и могут иметь доступ только к своим собственным сигнальным модулям.
Рабочие режимы этих CPU не синхронизированы, т.е. они могут быть одновременно в различных рабочих режимах. Связь между этими CPU может быть установлена посредством неразрывной K-шины.
Отличие CR2
В симметричной многопроцессорной системе (в отличие от системы на CR 2) все CPU (максимум 4) функционируют в одном и тот же режиме, например, STOP, то есть, в такой системе все переключения рабочих режимов синхронизированы.
ER 1 / ER 2 Стойки ER1 (18 слотов) / ER2 (9 слотов) не имеют K-шины, линий прерываний, линии питания 24 В и батарейной поддержки питания. Используется только для модулей типа А.
Нет ограничений на использование слотов Исключение: Источник питания PS должен устанавливаться в крайний левый, а принимающий (Receive) IM-модуль в стойке расширения ER - в крайний правый слот!
Режим мультипроцессорной обработки
S7-400 разрешает мультипроцессорную обработку (одновременное выполнение задач несколькими процессорами). Может быть осуществлено управление четырьмя соответствующим образом разработанными CPU в одной стойке, на одной P-шине или K-шине. Станция S7-400 автоматически перейдет в мультипроцессорный режим, если вы в утилите Hardware Configuration разместите более одного CPU в центральной стойке. Можно занимать произвольные слоты; CPU различаются по номерам, автоматически назначаемым в возрастающем порядке при монтаже CPU. Вы можете сами назначить эти номера на вкладке «Multicomputing» («Многопроцессорное вычисление»). Конфигурационные данные для всех CPU должны быть загружены в PLC, даже если вы вносите изменения только для одного CPU. После назначения параметров для центральных процессоров вы должны каждый модуль в станции назначить процессору. Это осуществляется путем параметризации модуля на вкладке «Addresses» («Адреса») в разделе «CPU Assignment» («Назначение CPU») (рисунок 20.5). Одновременно, назначая области адреса модуля, вы также можете назначить прерывания модуля для данного CPU. С помощью команды View → Filter → CPU No. x-modules (Вид →Фильтр → Номер CPU x-модули) вы можете выделить модули, назначенные CPU, в конфигурационных таблицах.
В мультипроцессорной сети все CPU находятся в одном и том же рабочем режиме. Это означает, что
Все они должны быть параметризованы с одинаковым режимом рестарта;
Все они переходят в режим RUN одновременно;
Все они переходят в режим HOLD, когда вы производите отладку в пошаговом режиме в одном из CPU;
Все они переходят в режим STOP, как только один из CPU перешел в этот режим.
Когда происходит сбой в одной из стоек станции, в каждом CPU вызывается организационный блок ОВ 86. Пользователь программирует в этих CPU независимое друг от друга выполнение; они не синхронизированы. SFC 35 MP_ALM вызывает одновременно во всех CPU организационный блок ОВ 60 «Multiprocessor interrupt» («Мультипроцессорное прерывание») (обратитесь к параграфу 21.6 «Мультипроцессорное прерывание»).