
- •1. Структура пневматических приводов
- •2. Физические основы функционирования пневмосистем
- •2.1 Основные параметры газа
- •2.2 Основные физические свойства газов
- •2.3. Основные газовые законы
- •2.4. Течение газа
- •2.4.1. Расход
- •2.4.2. Уравнение Бернулли
- •2.4.3. Режимы течения
- •3. Энергообеспечивающая подсистема
- •3.1. Производство и подготовка сжатого воздуха
- •3.2.1. Объемные компрессоры
- •3.2.2. Динамические компрессоры
- •3.3. Устройства очистки и осушки сжатого воздуха
- •3.4 Ресиверы
- •3.5. Трубопроводы. Соединения трубопроводов
- •3.6. Блоки подготовки воздуха
- •4. Исполнительная подсистема
- •4.1. Пневматические цилиндры
- •4.1.1. Пневмоцилиндры одностороннего действия
- •4.1.3. Позиционирование пневмоцилиндров
- •4.1.4. Бесштоковые пневмоцилиндры
- •4.1.5. Защита штока пневмоцилиндра от проворота
- •4.1.6. Монтаж пневмоцилиндров
- •4.2. Поворотные пневматические двигатели
- •4.4. Специальные пневматические исполнительные устройства
- •4.4.1. Цанговые зажимы
- •4.4.2. Пневматические захваты
- •4.4.3. Вакуумные захваты
- •5. Направляющая и регулирующая подсистема
- •5.1. Пневматические распределители
- •5.1.1. Моностабильные пневмораспределители
- •5.1.2. Бистабилькые пневмораспределители
- •5.1.3. Монтаж пневмораспределителей
- •5.1.4. Определение параметров пневмораспределителей
- •5.2. Запорные элементы
- •5.3. Устройства регулирования расхода
- •5.4. Устройства регулирования давления
- •6. Информационная подсистема
- •6.1. Пневматические путевые выключатели
- •6.2. Струйные датчики положения
- •6.5. Счетчики импульсов
- •7. Логико-вычислительная подсистема
- •7.1. Основные логические функции
- •7.2. Логические пневмоклапаны
- •7.3. Пневмоклапаны выдержки времени
- •7.4. Реализация функции запоминания сигнала в пневматических системах
- •8. Пневматические приводы технологического оборудования
- •8.1. Циклические пневмосистемы хода
- •8.1.1. Формы представления хода технологического процесса
- •8.1.2. Методы проектирования пневматических сау
- •8.1.3. Переключающие регистры
- •8.1.4. Реализация сервисных функций в пневматических системах
- •8.2. Пневмогидравлические приводы
- •8.3. Системы позиционирования
- •9. Релейно-контактные системы управления
- •9.1. Устройства ввода электрических сигналов
- •9.1.2. Электромеханические путевые (концевые) выключатели
- •9.1.3. Бесконтактные путевые выключатели
- •9.2. Устройства обработки электрических сигналов
- •9.3. Устройства преобразования сигналов
- •9.3.1. Электропневматические преобразователи
- •9.3.2. Пневмоэлектрические преобразователи (реле давления)
- •9.4. Реализация логических функций в релейно-контактных системах управления
- •9.5. Реализация функции запоминания сигнала в релейно-контактных системах управления
- •9.6. Правила построения релейно-контактных схем
- •9.7. Проектирование релейно-контактных систем управления
- •9.8. Переключающие регистры
- •9.9. Реализация сервисных функций в релейно-контактных системах управления
- •9.10. Электропневматические приводы с управлением от промышленных логических контроллеров
- •10. Эксплуатация пневматических приводов
- •10.1. Техническое обслуживание пневматических приводов
- •10.2. Поиск и устранение неисправностей
- •10.3. Требования безопасности
- •11.1. Основные газовые законы Закон Бойля — Мариотта
- •II. 2. Расчет внутреннего диаметра трубопроводов
- •11.4. Выбор пневмораспределителей
7.4. Реализация функции запоминания сигнала в пневматических системах
Под запоминанием сигнала в пневматических системах понимают сохранение сигнала на выходе устройства после снятия управляющего сигнала на его входе.
Рассмотрим в качестре примера систему управления пневмоприводом тисков, предназначенных для зажатия и удержания обрабатываемой детали после подачи команды «Зажим», Разжатие детали также должно производиться по соответствующей команде.
Функцию запоминания сигнала можно реализовать тремя способами: 1) путем использования распределителей с механическими фиксаторами (рис. 7.21, а); 2) посредством бистабильных распределителей (рис. 7.21, б); 3) на базе специальных схемных решений.
Рис. 7.21. Запоминание управляющего сигнала
Для запоминания управляющего сигнала в пневмосистемах, состоящих из моностабильных распределителей, применяют схемы с самоудержанием (рис. 7.22).
Рис. 7.22. Схема с самоудержанием на моностабильных элементах
При нажатии на пневмокнопку «Зажим» 1.2 сигнал через пневмоклапан «ИЛИ» 1.4 поступает в линию управления распределителем 1.1, вызывая его переключение. Шток цилиндра 1.0 выдвигается (зажатие детали), и одновременно сжатый воздух подается через нормально открытый распределитель 1.3 («Разжим») и клапан «ИЛИ» 1.4 в линию управления распределителем 1.1. Именно в связи с наличием этой линии управления (так называемой ветви самоудержания) шток цилиндра 1.0 остается выдвинутым даже после отпускания кнопки 1.2 («Зажим»). Нажатие на кнопку «Разжим» 1.3 приводит к прерыванию подачи управляющего сигнала на распределитель 1.1, вследствие чего последний (а следовательно, и пневмоцилиндр 1.0) возвращается в исходное положение.
8. Пневматические приводы технологического оборудования
8.1. Циклические пневмосистемы хода
На современном производстве многие машины-автоматы, автоматические линии, а также значительная часть вспомогательного оборудования, для которого характерно строгое выполнение заданной последовательности технологических операций (шаговые транспортеры, промышленные манипуляторы, толкатели, кантователи, укладчики и т. д.), оснащены преимущественно циклическими пневматическими САУ.
Работа циклических пневматических систем, по существу, представляет собой последовательную смену фиксированных положений выходных звеньев исполнительных механизмов. При этом их крайние, а при необходимости и промежуточные положения отслеживаются элементами информационной подсистемы. Информация о состоянии исполнительных механизмов либо ведомых ими узлов технологической установки обрабатывается элементами логико-вычислительной подсистемы, на выходе которой формируется управляющий сигнал на выполнение очередного рабочего шага. Под шагом понимают процесс смены одного контролируемого датчиком положения исполнительного механизма на другое.
Число шагов, необходимых для выполнения единичного замкнутого цикла технологических операций, может различаться в зависимости от сложности оборудования. Под замкнутым циклом будем понимать такую последовательность шагов, после выполнения которой система возвращается в исходное (предпусковое) состояние.
Так, один рабочий цикл рассматриваемой далее установки для перемещения коробок (рис. 8.1) состоит из четырех шагов.
Рис. 8.1. Установка для перемещения коробок
По конвейеру в произвольной последовательности и с переменным интервалом движутся коробки двух конфигураций — кубические и овальные. Кубические коробки необходимо перемещать на параллельную ветвь конвейера. Операция перемещения осуществляется посредством двух пневмоцилиндров А и В.
Когда кубическая коробка оказывается на транспортере (смещаемой секции конвейера), оператор кратковременно нажимает на пусковую пневмокнопку и шток первого цилиндра А перемещает секцию с коробкой на уровень параллельной ветви конвейера. Далее цикл выполняется автоматически: шток второго цилиндра В сталкивает коробку с транспортера, после чего штоки обоих пневмоцилиндров возвращаются в исходные позиции — сначала шток первого, а затем и второго цилиндра.