
- •2. Агрономические свойства и режимы почв
- •2.1. Строение почвенного профиля, генетические горизонты и признаки
- •3.2. Системы генетических горизонтов почв различных классификаций
- •2.2. Физические свойства почв
- •2.27. Классификация почв по гранулометрическому составу по н.А.Качинскому
- •2.28. Единая классификационная шкала почв по гранулометрическому составу
- •2.29. Примерная оценка гранулометрического состава почв для зерновых культур (по н.А. Качинскому)
- •2.30. Оптимальные диапазоны плотности по а.Г.Бондареву (14)
- •2.31. Оценка плотности и пористости суглинистых и глинистых почв в вегетационный период по н.А. Качинскому
- •54. Агрономическая классификация почвенной структуры
- •2.32. Оптимальная и равновесная плотности средне- и тяжелосуглинистых почв и её изменение (дрейф) в течение вегетационного периода, г/см3 (по а.Ф. Бондареву и в.В, Медведеву, 1980)
- •2.33. Оценка структуры и сложения пахотного слоя почв (по и.В. Кузнецовой, 1979)
- •2.34. Удельное сопротивление различных почв
- •2.35.Оценка переуплотнения почвы по критическим значениям сопротивления пенетрации
- •2.36. Оценка наименьшей (предельной полевой) влагоемкости (н.А. Качинский)
- •2.37. Шкала оценки дождей и водопроницаемости почвы
- •2.38. Классификационные градации коэффициента фильтрации почв (ф.Р. Зайдельман)
- •2.39. Диапазоны средних значений коэффициента фильтрации для различных по гранулометрическому составу почв
- •2.40. Некоторые характерные физические свойства почв различного гранулометрического состава (наиболее вероятный диапазон – в скобках)
- •2.4.1.3. Химические и физико-химические свойства почв
- •2.41. Показатели гумусового состояния почв
- •2.4. Водный режим почвы и его регулирование
- •2.4.1. Водный режим и баланс
- •2.4.2. Типы водного режима
- •2.4.3. Регулирование водного режима почв и агроландшафтов
- •2.5. Тепловой режим почв
- •2.5.1. Радиационный и тепловой баланс
- •2.5.2. Перенос тепла в почве
- •2.5.3. Температурный режим почв и определяющие его условия
- •2.5.4. Замерзание и оттаивание почвы
- •2.5.5. Типы теплового (температурного) режима почв
- •2.5.6. Влияние теплового режима на интенсивность почвенных процессов
- •2.5.7. Регулирование теплового режима
- •2.6. Воздушный режим почв и его регулирование
- •2.6.1. Основные понятия
- •2.6.2. Состав почвенного воздуха, газообмен с атмосферой
- •2.6.3. Регулирование воздушного режима почвы
- •2.7. Окислительно-восстановительные режимы почв
- •2.7.1. Окислительно-восстановительные процессы и определяющие их факторы.
- •2.7.2. Влияние окислительно-восстановительных процессов на почвообразование и плодородие почв
- •2.7.3. Типы окислительно-восстановительных режимов
- •2.8. Почвенная биота и биологические процессы в почвах
- •2.8.1. Почвенные водоросли и их функционирование
- •2.8.2. Почвенные процессы, происходящие при участии животных
- •2.8.3. Почвенные грибы и их функции
- •2.8.4. Бактерии и актиномицеты, их функции в почве
- •2.8.5. Полифункциональность микроорганизмов
- •2.8.6. Концепция почвы как множества сред обитания микроорганизмов
- •2.8.7. Изменение микробиологических процессов при сельскохозяйственном использовании почв и их регулирование
- •2.8.7.1. Влияние окультуривания почв на микробиологическую
- •Влияние сельскохозяйственной культуры на микробиологическую активность пахотного слоя почв, млн микроорганизмов на 1 г абсолютно сухой почвы (в.Д. Муха, 1995)
- •11. Влияние сельскохозяйственного использования на ферментативную активность верхних горизонтов зональных типов почв
- •2.8.7.2. Почвоутомление
- •8. Изменение содержания свободных фенолов в черноземе типичном под озимой пшеницей в процессе девятилетнего бессменного возделывания и в севообороте, мкг/100 г почвы
- •2.8.7.4. Применение микробиологических препаратов
- •2.8.8. Оценка биологической активности почвы
- •2.9. Биологический круговорот.
- •2.9.1. Круговорот элементов в естественных фитоценозах.
- •2.9.2.Изменение биологического круговорота при сельскохозяйственном использовании почв.
- •2.10. Режим органического вещества в почвах
- •2.10.1 Поступление органического вещества в почву в естественных биогеоценозах
- •2.10.2. Процессы трансформации органического вещества в почвах различных биогеоценозов агроценозов
- •2.10.3. Изменение гумусового режима почв в процессе трансформации естественных биогеоценозов в агроценозы.
- •2.10.4.Балансовый подход к регулированию режима органического вещества в агроэкосистемах.
- •2.10.5.Критерии оптимизации режима органического вещества почв.
- •2.11. Режимы основных элементов питания растений и их регулирование
- •2.11.1. Азот
- •2.11.2. Фосфор
- •2.11.3. Калий
- •2.12. Процессы, определяющие почвообразование
- •2.12.1. Микропроцессы
- •2.12.2. Элементарные почвенные процессы (мезопроцессы) и их агрономическая оценка.
- •Биогенно-аккумулятивные процессы
- •Метаморфические эпп
- •Элювиальные процессы
- •Гидрогенно-аккумулятивные процессы
- •2.12.3. Почвообразовательные процессы (макропроцессы)
2.33. Оценка структуры и сложения пахотного слоя почв (по и.В. Кузнецовой, 1979)
Содержание водопрочных агрегатов размером более 0,25 мм, % |
Оценка |
Равновесная плотность сложения, г/см3 |
Оценка плотности сложения |
|
Водопрочности структуры |
Устойчивости сложения по структуре |
|||
Менее 10 |
Неводопрочная |
Неустойчивое |
Более 1,5 |
Очень плотное |
10…20 |
Неудовлетворительная |
1,5…1,4 |
||
20…30 |
Недостаточно удовлетворительная |
Недостаточно устойчивое |
1,4…1,3 |
Плотное |
30…40 |
Удовлетворительная |
Устойчивое |
1,3…1,2 |
Уплотненное |
40…60 |
Хорошая |
1,2…1,1 |
Оптимальное для большинства культур |
|
60…75(80) |
Отличная |
Высокоустойчивое |
1,1…1,0 |
|
Более 75(80) |
Избыточно высокая |
Менее 1,0 |
Рыхлое (пашня вспушена) |
Нижний предел указанных в таблице интервалов содержания водопрочных агрегатов относится к малогумусным почвам Нечерноземной зоны, а верхний — к высокогумусным почвам Черноземной зоны.
Агрономическое значение структуры имеет несколько аспектов.
1. В структурных почвах складывается наиболее благоприятный водно-воздушный режим благодаря рациональному сочетанию капиллярной и некапиллярной пористости. Они отличаются большей водопроницаемостью и влагоемкостью. Наличие некапиллярных пор способствует уменьшению испарения влаги с поверхности.
2. Достаточная аэрация при наличии доступной влаги создает лучшие условия для активизации микробиологических процессов, предотвращения денитрификации, мобилизации питательных веществ.
3. Благодаря сокращению поверхностного стока на структурных почвах уменьшается смыв и размыв, а структурные агрегаты размером более 1 мм устойчиво противостоят дефляции.
4. Агрономически ценная структура облегчает прорастание семян и распространение корней растений.
5. На структурных почвах уменьшаются энергетические затраты на механическую обработку, создаются возможности ее минимизации вплоть до отказа от основной обработки.
Процессы структурообразования в почвах протекают под влиянием физико-механических, физико-химических, химических и биологических факторов.
К числу физико-механических факторов относится разделение почвы на агрегаты в результате изменения объема и давления при переменном высушивании и увлажнении, замерзании и оттаивании воды в ней, давления корней растений, деятельности роющих животных и рыхлящего воздействия почвообрабатывающих орудий. Разрыхляющее воздействие промораживания на почву проявляется только при оптимально влажном ее состоянии. При замерзании переувлажненной почвы, наоборот, происходит разрыв структурных отдельностей, а промерзание сухой почвы не влияет на ее крошение.
Физико-химические факторы структурообразования — коагуляция и цементирующее воздействие почвенных коллоидов. При этом водопрочность обеспечивается только склеиванием частиц органическими коллоидами при их коагуляции двух- и трехвалентными катионами. Агрегаты, образующиеся при участии только минеральных коллоидов, водопрочностью не обладают. Наиболее водопрочная структура образуется при взаимодействии гуминовых кислот с минералами монтмориллонитовой группы и гидрослюдами. Минералы гидроксидов железа и алюминия играют важную роль в оструктуривании красноцветных глин и красноземов.
В числе химических факторов оструктуривания важную роль играет цементация агрегатов окисными формами железа при смене восстановительных условий окислительными в периодически переувлажняемых почвах. Такие агрегаты, по данным Н.А.Качинского, при высокой водопрочности имеют малую пористость (<40 %), поскольку часть объема пор постепенно заполняется гидроксидом железа.
Основная роль в структурообразовании принадлежит биологическим факторам, т.е. растительности и организмам, населяющим почву (особенно дождевым червям). Первоначальное представление о формировании водопрочной структуры, развитое В.Р.Вильямсом, сводилось к тому, что образующийся в ходе разложения растительных остатков "деятельный" перегной пропитывает почвенные комочки и склеивает их, затем происходят процессы денатурации, которые превращают "деятельный" перегной в цемент. При этом В.Р.Вильямс придавал решающее значение ульминовой кислоте и ее кальциевым солям.
Позднее было доказано, что в процессах образования водопрочных агрегатов ведущую роль играют гуминовые вещества. Природа их связи с минеральной частью почвы до конца не изучена, хотя показано, что она осуществляется через ионогенные группы гидроксидов железа, алюминия, обменных щелочноземельных катионов, сорбцию на внутренних поверхностях глинистых минералов монтмориллонитовой группы.
В дальнейшем были получены многочисленные данные о динамичности водопрочности почвенных агрегатов, когда в течение одного вегетационного периода наблюдалась смена увеличения водопрочности ее спадом. Отсюда вытекал вывод, что наряду с прочно клеящими материалами в почве имеются вещества, более лабильные в отношении клеящей способности. Такой способностью, как оказалось, обладают полисахариды растительного и микробного происхождения, причем вторые значительно в большей степени, чем первые. Агрегирование почв под влиянием микроорганизмов имеет различные аспекты: сцепляющая сила мицелия актиномицетов и грибов, склеивание частиц слизистыми веществами, вырабатываемыми бактериями и выделяющимися при их автолизе.
Почвенные агрегаты, сформировавшиеся под влиянием различных факторов, не могут обладать одинаковой стабильностью. Комочек почвы, склеенный гуминовыми веществами, устойчивыми к микроорганизмам, значительно медленнее разрушается, чем агрегат, сформированный под влиянием белков, бактериальных слизей или сцепляющей силы мицелия.
В географическом аспекте структурность почв коррелирует прежде всего с содержанием гумуса. Это правило корректируется солонцеватостью, засоленностью, оглеенностью, кислотностью почв, гранулометрическим и минералогическим составом.
Физико-механические свойства: пластичность, липкость, набухание, усадка, связность, твердость (или сопротивление пенетрации) и сопротивление при обработке.
Пластичность оценивается по числу пластичности – разнице между нижним и верхним пределами пластичности (пределом текучести и пределом раскатывания). Глинистые почвы имеют число пластичности более 17, суглинистые – 7…17, супеси – менее 7, пески непластичны (число пластичности приближается к 0). Пластичность сильно возрастает с повышением содержания набухающих минералов в почвах, особенно солонцовых. Наибольшей пластичностью отличаются глинистые солонцы, содержащие обменного натрия 25…30 % и более от емкости поглощения. Пластичность уменьшается при высоком содержании гумуса.
Липкость проявляется при влажности почвы, близкой к верхнему пределу пластичности. Увеличение степени насыщенности почв кальцием снижает липкость, натрием – резко увеличивает. Наименьшей липкостью обладают песчаные почвы, наибольшей – глинистые. Высокогумусированные почвы даже при высоком увлажнении (30…40 %) не проявляют липкости. По липкости почвы подразделяются на предельно вязкие (более 15 г/см2), сильновязкие (5…15 г/см2), средние по вязкости (2…5 г/см2), слабовязкие (менее 2 г/см2). Состояние влажности, при котором почва утрачивает липкость, отвечает физической спелости почв.
Способность к набуханию и усадке различных почв изменяются пропорционально содержанию глинистых и особенно коллоидных частиц, минералов монтмориллонитовой группы, органических коллоидов, и сильно возрастет с повышением содержания обменного натрия. Сильное набухание при высокой влажности вызывает разрушение почвенной структуры. Усадка при высыхании приводит к трещиноватости почв, разрыву корней растений, усилению физического испарения.
Важнейшие технологические показатели затрат на обработку почвы обусловлены ее связностью и твердостью. Наибольшей связностью характеризуются сухие глинистые бесструктурные почвы с небольшим содержанием гумуса и большой долей натрия в ППК, наименьшей – песчаные.
Удельное сопротивление почв в зависимости от гранулометрического состава, физико-химических свойств, влажности, плотности и структурного состояния изменяется в пределах 0,2…1,2 кг/см2 (таблица 2.34.) Наименьшим удельным сопротивлением характеризуются почвы легкого гранулометрического состава, наибольшим – тяжелосуглинистые и глинистые почвы, особенно солонцы, содержащие более 20 % обменного натрия от емкости поглощения. Максимальное удельное сопротивление обработке наблюдается при влажности, близкой к влажности устойчивого завядания, минимальное – при влажности почвы, соответствующей физической спелости. Удельное сопротивление почв под пропашными культурами значительно меньше, чем под зерновыми и многолетними травами, на целинных и залежных почвах оно выше на 45…50 %, чем на старопахотных.
Физическая спелость почв – состояние готовности почвы к обработке, обусловленное такой влажностью, когда почва обладает минимальным удельным сопротивлением и хорошо крошится, не распыляясь при этом.
Твердость почвы (или сопротивление пенетрации) – сопротивление почвы внедрению в нее зонда цилиндрической или конусообразной формы небольшого диаметра (атм, кПа или другие единицы давления). Она определяется специальными приборами (твердомерами), которые измеряют силу проникновения в почву штампа известной формы, как правило цилиндрической или конусовидной. Измеряя силу и зная величину площади проникновения штампа, рассчитывают твердость, или сопротивление пенетрации в единицах давления. С помощью сопротивления пенетрации оценивают степень переуплотнения почвы (табл. 2.35)