
- •2. Агрономические свойства и режимы почв
- •2.1. Строение почвенного профиля, генетические горизонты и признаки
- •3.2. Системы генетических горизонтов почв различных классификаций
- •2.2. Физические свойства почв
- •2.27. Классификация почв по гранулометрическому составу по н.А.Качинскому
- •2.28. Единая классификационная шкала почв по гранулометрическому составу
- •2.29. Примерная оценка гранулометрического состава почв для зерновых культур (по н.А. Качинскому)
- •2.30. Оптимальные диапазоны плотности по а.Г.Бондареву (14)
- •2.31. Оценка плотности и пористости суглинистых и глинистых почв в вегетационный период по н.А. Качинскому
- •54. Агрономическая классификация почвенной структуры
- •2.32. Оптимальная и равновесная плотности средне- и тяжелосуглинистых почв и её изменение (дрейф) в течение вегетационного периода, г/см3 (по а.Ф. Бондареву и в.В, Медведеву, 1980)
- •2.33. Оценка структуры и сложения пахотного слоя почв (по и.В. Кузнецовой, 1979)
- •2.34. Удельное сопротивление различных почв
- •2.35.Оценка переуплотнения почвы по критическим значениям сопротивления пенетрации
- •2.36. Оценка наименьшей (предельной полевой) влагоемкости (н.А. Качинский)
- •2.37. Шкала оценки дождей и водопроницаемости почвы
- •2.38. Классификационные градации коэффициента фильтрации почв (ф.Р. Зайдельман)
- •2.39. Диапазоны средних значений коэффициента фильтрации для различных по гранулометрическому составу почв
- •2.40. Некоторые характерные физические свойства почв различного гранулометрического состава (наиболее вероятный диапазон – в скобках)
- •2.4.1.3. Химические и физико-химические свойства почв
- •2.41. Показатели гумусового состояния почв
- •2.4. Водный режим почвы и его регулирование
- •2.4.1. Водный режим и баланс
- •2.4.2. Типы водного режима
- •2.4.3. Регулирование водного режима почв и агроландшафтов
- •2.5. Тепловой режим почв
- •2.5.1. Радиационный и тепловой баланс
- •2.5.2. Перенос тепла в почве
- •2.5.3. Температурный режим почв и определяющие его условия
- •2.5.4. Замерзание и оттаивание почвы
- •2.5.5. Типы теплового (температурного) режима почв
- •2.5.6. Влияние теплового режима на интенсивность почвенных процессов
- •2.5.7. Регулирование теплового режима
- •2.6. Воздушный режим почв и его регулирование
- •2.6.1. Основные понятия
- •2.6.2. Состав почвенного воздуха, газообмен с атмосферой
- •2.6.3. Регулирование воздушного режима почвы
- •2.7. Окислительно-восстановительные режимы почв
- •2.7.1. Окислительно-восстановительные процессы и определяющие их факторы.
- •2.7.2. Влияние окислительно-восстановительных процессов на почвообразование и плодородие почв
- •2.7.3. Типы окислительно-восстановительных режимов
- •2.8. Почвенная биота и биологические процессы в почвах
- •2.8.1. Почвенные водоросли и их функционирование
- •2.8.2. Почвенные процессы, происходящие при участии животных
- •2.8.3. Почвенные грибы и их функции
- •2.8.4. Бактерии и актиномицеты, их функции в почве
- •2.8.5. Полифункциональность микроорганизмов
- •2.8.6. Концепция почвы как множества сред обитания микроорганизмов
- •2.8.7. Изменение микробиологических процессов при сельскохозяйственном использовании почв и их регулирование
- •2.8.7.1. Влияние окультуривания почв на микробиологическую
- •Влияние сельскохозяйственной культуры на микробиологическую активность пахотного слоя почв, млн микроорганизмов на 1 г абсолютно сухой почвы (в.Д. Муха, 1995)
- •11. Влияние сельскохозяйственного использования на ферментативную активность верхних горизонтов зональных типов почв
- •2.8.7.2. Почвоутомление
- •8. Изменение содержания свободных фенолов в черноземе типичном под озимой пшеницей в процессе девятилетнего бессменного возделывания и в севообороте, мкг/100 г почвы
- •2.8.7.4. Применение микробиологических препаратов
- •2.8.8. Оценка биологической активности почвы
- •2.9. Биологический круговорот.
- •2.9.1. Круговорот элементов в естественных фитоценозах.
- •2.9.2.Изменение биологического круговорота при сельскохозяйственном использовании почв.
- •2.10. Режим органического вещества в почвах
- •2.10.1 Поступление органического вещества в почву в естественных биогеоценозах
- •2.10.2. Процессы трансформации органического вещества в почвах различных биогеоценозов агроценозов
- •2.10.3. Изменение гумусового режима почв в процессе трансформации естественных биогеоценозов в агроценозы.
- •2.10.4.Балансовый подход к регулированию режима органического вещества в агроэкосистемах.
- •2.10.5.Критерии оптимизации режима органического вещества почв.
- •2.11. Режимы основных элементов питания растений и их регулирование
- •2.11.1. Азот
- •2.11.2. Фосфор
- •2.11.3. Калий
- •2.12. Процессы, определяющие почвообразование
- •2.12.1. Микропроцессы
- •2.12.2. Элементарные почвенные процессы (мезопроцессы) и их агрономическая оценка.
- •Биогенно-аккумулятивные процессы
- •Метаморфические эпп
- •Элювиальные процессы
- •Гидрогенно-аккумулятивные процессы
- •2.12.3. Почвообразовательные процессы (макропроцессы)
2.8. Почвенная биота и биологические процессы в почвах
Населяющие почву организмы или, по выражению В.И. Вернадского ее «живое вещество» создают почву как таковую, обеспечивая воспроизводство ее плодородия и экологических функций.
Совокупность многочисленных популяций разнообразных организмов, выполняющих эти функции называют «почвенной биотой». Она представлена высшими растениями, почвенными водорослями, животными, грибами, лишайниками, прохариотами, вирусами и фагами.
2.8.1. Почвенные водоросли и их функционирование
Среди почвенных водорослей наиболее широко представлены зеленые и синезеленые (около 500 видов каждого отдела), далее датомовые (около 300 видов) и желто-зеленые (более 150 видов).
Известна пионерная роль водорослей как первопоселенцев на различных минеральных субстратах, заселяющих поверхности скал и различных поверхностей имеющих достаточное освещение.
Водоросли обнаруживаются во всех почвах в том числе в полупустынях и пустынях. Их численность и биомасса зависят от влажности и условий освещения, изменяясь от 5000 до 15, млн. клеток в 1 г почвы. Количество их возрастает на поверхностях с низким проективным покрытием высших растений, в частности на солонцах, такырах. Годовая продукция почвенных водорослей в разных почвах колеблется от 50 до 1500 кг/га.
Функции водорослей в почвах определяются ролью первичных продуцентов органического вещества, а также накоплением органического вещества, обогащенного азотом. Сине-зеленые водоросли (цианобактерии) способны к фиксации атмосферного азота. Эта исключительная способность цианобактерий (прохариотов) не свойственна другим водорослям (эукариотам) для которых источниками азота служат атмосферные и нитратные соединения. В этом отношении водоросли выступают конкурентами растений за доступные формы азота. В паровых полях и после уборки урожая развитие водорослей может способствовать временному закреплению соединений азота и предотвращению их вымывания из почвы.
Водоросли оказывают благоприятное влияние на кислородный режим почв, на кислородный режим почв, на почвенную структуру.
Поскольку водоросли являются фотосинтезирующими микроорганизмами они не нуждаются в готовых органических веществах. Однако в слоях почвы, куда не проникает солнечный свет, некоторые из них способны переключаться на гетеротрофный образ жизни и поглощают растворенные органические вещества. Степень проявления разных типов питания в метаболизме водорослей зависит от освещенности, количества органических и минеральных веществ в среде окислительно-восстановительного потенциала и рН среды.
Водоросли являются чувствительными индикаторами загрязнения почвы. Зеленые чутко реагируют на засоление, изменение рН губительно сказывается на синезеленых, желтозеленые водоросли являются показателями загрязнения почвы пестицидами и другими токсинами.
2.8.2. Почвенные процессы, происходящие при участии животных
Масса органического вещества, создаваемая растениями и водорослями, то есть первичными продуцентами, поступает в биологическом круговороте к следующему звену – консументам. В их числе наряду с основными преобразователями органической массы грибами и бактериями немаловажную роль играют почвенные животные. Наряду с механическим воздействием на почву они оказывают существенное влияние на почвообразование, структуру почвы, ее биологическую активность.
В соответствии с особенностями образа жизни и размерами выделяют нано-, микро-, мезо-, макро- и мегафауну.
Нанофауна представлена одноклеточными простейшими; микрофауна – многоклеточными микроскопическими животными (коловратками, нематодами, тихоходками, клещами, ногохвостками); мезофауна – мелкими насекомыми, некоторыми многоножками, мокрицами, пауками, энхитеридами; макрофауна – дождевыми червями, многоножками, мокрицами, личинками насекомых; мегафауна – землероями.
Роль почвенных животных чрезвычайно велика в трансформации растительных остатков: в их измельчении, способствующем более быстрому разложению, перемешивании с минеральной частью почвы и биохимической переработке. При этом важное значение для почвообразования имеет перемещение материала из нижних горизонтов на поверхность, затаскивание вглубь растительных остатков и гумусного поверхностного слоя. Неусвоенная животными часть остатков выбрасывается ими в виде экскрементов, обогащенных кишечной бактериальной флорой. В экскрементах органические вещества тесно перемешаны с минеральными частицами. Экскременты почвенных животных обогащены доступными формами азотной и зольной пищи, биогенным кальцитом, что уменьшает кислотность почвы и улучшает ее структурность. В наиболее благоприятных для животного населения почвы условиях они могут перерабатывать на одном гектаре до 225 тонн почвенной массы за год (М.С. Гиляров, 1985)
Примечательно, что регулярные вертикальные миграции совершают практически все активно передвигающиеся животные: личинки хрущей, проволочники, мокрицы, ногохвостки, клещи и т.д., причем все они реагируют на малейшие изменения среды, особенно влажности и температуры. Мелкие членистоногие (клещи и ногохвостки) совершают миграции в глубоких слоях почвы даже зимой, когда верхний слой замерзает. Во время оттаивания почвы эти животные перемещаются в более поверхностные слои, хотя там температура почвы в это время не превышает 1 – 1,50С.
Многие организмы, начиная с простейших, выделяют биологически активные вещества, стимулирующие рост микроорганизмов, корней растений, подавляют активность вредных для растений грибов.
Исключительно велика в почвообразовании роль дождевых червей. Они прокладывают в почве огромное количество ходов. Общее количество почвенной массы, ежегодно пропускаемой дождевыми червями через пищеварительный канал, может достигать 25 т/га. Количество органического вещества, поедаемого и перерабатываемого дождевыми червями ежегодно, доходит до 1 т/га. Черви углубляют плодородный слой почвы. Благодаря вертикальным ходам усиливается водопроницаемость, аэрация, улучшаются условия для прорастания корней растений. Деятельность дождевых червей влияет и на структуру почвы, что крайне важно для улучшения ее агрономических свойств. Структурные отдельности почвы, образующиеся, когда через кишечник червей проходят растительные остатки и минеральные частицы, отличаются высокой прочностью, устойчивостью к размыванию. В пищеварительном тракте червей не переваренные остатки пищи перемешиваются с минеральными частицами, склеиваются слизистыми выделениями стенок кишечника, сильно спрессовываются при перистальтических сокращениях его мышц и выбрасываются в виде так называемых копролитов («каменных экскрементов»).
В кишечниках дождевых червей, кроме того, накапливаются минеральные вещества в доступной для растений форме. Многие почвенные минералы, проходя через кишечник червей, разрушаются (например, из песчинок базальта высвобождаются калий и магний), так что в копролитах бывает больше растворимых фосфора, калия, магния, чем в окружающей почве. К тому же экскременты червей обогащаются аммиаком, продуцируемым стенками кишечника, а проделанные червями ходы — аммиаком, выделяемым со слизью с поверхности тела.
Учитывая огромную роль дождевых червей в повышении плодородия почв, очевидно, следует способствовать их расселению, особенно в садах, на пастбищах и сенокосах, где почва не подвергается ежегодно обработке. Расселение червей путем случайного заноса иногда происходит быстро, но может протекать и очень медленно; особенно маловероятно попадание червей на изолированные участки, значительно удаленные от ареалов ближайших популяций. Поэтому, когда осваиваются новые территории целесообразно проводить интродукцию дождевых червей.
Имеется опыт интродукции и других видов почвенной фауны. В частности, австралийский почвенный зоолог Г.Ф. Борнемисса предложил провести работу по интродукции навозников, питающихся экскрементами копытных, чтобы они способствовали освобождению пастбищ от навоза, удобрению почвы пастбищ и ликвидации массового размножения назойливых и кровососущих мух, развивающихся в навозе.
Состав почвенной фауны изменяется в почвах различных зон. В тайге в подзолистых и дерново-подзолистых почвах животные встречаются в самом верхнем слое почв и в подстилке практически не глубже 10 сантиметров.
Биомасса животных у северной границы тайги составляет 10—20 граммов на квадратный метр, а у южной - вдвое выше. По мере продвижения к югу с увеличением мощности гумусового слоя возрастает численность почвенных животных, их разнообразие, они проникают на все большую глубину. В еловых лесах около Москвы большинство животных обитает на глубине 15—20 сантиметров. Только зимой черви, клещи и ногохвостки спускаются глубже, стараясь не попадать в промерзший слой почвы. В особенно холодные зимы, когда морозы схватывают не успевшую накрыться снежным покровом землю, случается массовая гибель от вымерзания многих почвенных животных: дождевых червей, энхитреид, личинок насекомых, многоножек и даже микрофауны.
Наиболее обильна почвенная фауна в почвах под широколиственными лесами — серых лесных, буроземах, черноземах. Здесь животные обитают на глубине до 1 метра, а микроорганизмы — до 2 метров. Столь же богата и еще более разнообразна почвенная фауна в широколиственных лесах субтропиков на желтоземах и красноземах. Здесь животные проникают на глубину до 40—50 сантиметров, так как дальше идут тяжелые переувлажненные глины.
Скорость разложения опада зависит от погодных условий, состава населения беспозвоночных. А вкусы животных не совпадают. Так, кивсяки и мокрицы охотнее питаются листьями ясеня и ольхи, а не дуба и бука, а дождевые черви предпочитают листья бузины и лещины листьям дуба и клена. Почти все виды мезофауны не едят опад хвойных пород, но его охотно потребляют панцирные клещи, которые, выедая хвоинки изнутри, увеличивают поверхность опада в 10 тысяч раз, делая его более доступным для разложения микроорганизмами. Высказано даже предложение искусственно расселять орибатид в местах, где разложение подстилки замедлено (М.С. Гиляров, 1985).
Труднее точно определить роль в трансформации органического вещества многих более мелких групп микроартропод и нематод, которые зачастую питаются не самими мертвыми растительными веществами, а разлагающими их грибами. Но их значение, несомненно, велико, поскольку численность этих животных высока, а интенсивность метаболизма больше, чем у крупных форм.
В степной зоне, по сравнению с лесной численность животных в почве явно ниже, а биомасса меньше в три раза. Заметно отличается и состав населения, так как в степи меньше обитателей подстилки, меньше форм, питающихся гниющими растительными остатками. В то же время в степи больше фитофагов (личинок хрущей, щелкунов, чернотелок), а из позвоночных — корнеедов, В отдельные годы биомасса одних лишь личинок хрущей может достигать 10 граммов на квадратный метр. Общая биомасса почвенных животных равна 20—30 граммам, причем 20—50 процентов приходится на долю дождевых червей, 15—25 процентов — на личинок хрущей; много также личинок насекомых, кивсяков, губоногих многоножек и т. д. В степях особенно заметна почвообразующая деятельность муравьев.
Почвенная фауна пустынь весьма малочисленна. В пустынях совершенно нет дождевых червей (они встречаются здесь только на поливных землях и в поймах рек), кивсяков, мокриц подстилочного комплекса и многих других привычных почвенных животных. Зато здесь часто встречаются эмбии, скорпионы, пустынные мокрицы, термиты, слепозмейки, крупные геофилиды, сколопендры. На поливных землях пустынь роль почвообразователей берут на себя дождевые черви; большое значение приобретают и почвенные простейшие.
Вовлечение почв в активный сельскохозяйственный оборот резко снижает численность почвенной фауны, особенно при интенсивной механической обработке и применении пестицидов. Минимизация почвообработки, переход к прямому посеву без механической обработки почвы способствует развитию почвенной фауны и соответственно улучшению свойств почв, их структурного состояния благодаря биологическому саморыхлению.
В составе почвенной фауны значительное распространение имеют вредоносные виды: проволочники, медведки, гусеницы совок, корневые тли, личинки майского жука и др. Размножению их способствуют бессменные культуры, несовершенство агротехнологий. Создание условий для увеличения видового разнообразия и численности почвенной фауны наряду с защитными мерами способствует снижению численности вредных видов.