
- •Оглавление
- •Введение
- •1. Основные понятия и определения статики
- •1.1. Материальная точка. Абсолютно твердые и деформируемые тела
- •1.2. Сила-вектор. Система сил. Эквивалентность сил
- •1.3. Аксиомы статики
- •1.4. Связи и их реакции
- •2. Плоская система сходящихся сил
- •2.1. Геометрический метод сложения сил, приложенных в одной точке
- •2.2. Проекция силы на ось. Проекция векторной суммы сил на ось
- •2.3. Условие равновесия плоской системы сходящихся сил
- •2.4. Теорема о трех непараллельных силах
- •2.5. Решение задач на определение реакции связей
- •Задачи для самостоятельного решения
- •3. Пара сил и моменты сил
- •3.1. Пара сил и ее действие на тело. Эквивалентность пар
- •3.2. Момент силы относительно точки и оси
- •3.3. Приведение произвольной системы сил к заданному центру
- •Пример решения задачи
- •3.4. Условия равновесия плоской системы сил.
- •3.5. Равновесие пространственной системы сил
- •4. Балочные системы. Классификация нагрузок и опор
- •Пример решения задачи
- •Задания для самостоятельного решения
- •5. Сила трения
- •6. Центр тяжести плоских фигур
- •6.1. Сила тяжести
- •6.2. Определение центра силы тяжести
- •6.3. Координаты центра тяжести плоской фигуры
- •6.4. Центры тяжести геометрических фигур
- •7. Кинематика
- •7.1. Основные понятия кинематики. Кинематика точки
- •7.2. Кинематика твердого тела
- •8. Динамика
- •Коэффициент полезного действия
- •Задачи для самостоятельного решения
- •9. Сопротивление материалов
- •9.1. Основные понятия и гипотезы и допущения сопротивления материалов
- •9.1.1. Основные задачи сопротивления материалов
- •9.1.2. Внутренние силы. Метод сечений
- •9.2. Геометрические характеристики плоских сечений
- •9.3. Растяжение и сжатие
- •Решение задач на тему «Растяжение и сжатие»
- •Задачи для самостоятельного решения
- •9.4. Кручение
- •9.5. Срез и смятие
- •9.5.1. Сдвиг (срез)
- •9.5.2. Смятие
- •9.5. Изгиб
- •Решение задач на тему «Изгиб»
- •Задачи для самостоятельного решения
- •9.7. Прочность при динамических нагрузках, усталость
- •9.8. Устойчивость сжатых стержней
- •Расчет на устойчивость
- •Способы определения критической силы
- •Данные для расчета по формуле ф.О Ясинского. Таблица 9.4
- •10. Детали машин
- •10.1. Основные понятия и определения
- •10.2. Соединения разъемные и неразъемные
- •10.2.1. Сварные соединения
- •Решение задач «Расчет сварного шва»
- •Задачи для самостоятельной работы
- •10.2.2. Соединения пайкой
- •10.2.3. Клеевые соединения
- •10.2.4. Заклепочные соединения. Соединения гибкой
- •Решение задач на тему «Заклепочные соединения»
- •Задание для самостоятельной работы «Расчет заклепочного соединения»
- •Справочные материалы
- •Допускаемые напряжения для деталей заклепочного соединения. Таблица 16
- •10.3. Зубчатые механизмы передачи
- •10.3.1. Основные понятия
- •10.3.2. Изготовление колес
- •10.3.3. Выбор двигателя. Кинематический расчет привода
- •Диапазон мощностей трехфазных асинхронных двигателей серии 4а, кВт
- •10.3.4. Определение номинальной мощности и номинальной частоты вращения двигателя
- •10.3.5. Определение передаточного числа привода и его ступеней
- •Рекомендуемые значения передаточных чисел
- •10.3.6. Определение силовых и кинематических параметров привода
- •Определение силовых и кинематических параметров привода
- •10.3.7. Выбор материала зубчатых передач. Определение допускаемых напряжений
- •Выбор материала, термообработки и твердости
- •Механические характеристики некоторых марок сталей для изготовления зубчатых колес и других деталей
- •Решение задачи «Расчет привода цепного конвейера»
- •Стандартные значения m
- •Задание для самостоятельной работы
- •«Расчет привода цепного»
- •Справочные материалы
- •10.4. Муфты
- •Библиографический список
- •Приложение 1
- •П риложение 2
- •Техническая механика
- •620034, Екатеринбург, Колмогорова, 66, УрГупс
2.2. Проекция силы на ось. Проекция векторной суммы сил на ось
Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников сопряжено с громоздкими построениями. Универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление.
Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.
Проекция вектора считается положительной, если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной, если направление от начала проекции к ее концу противоположно положительному направлению оси.
Таким образом, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.
Рассмотрим ряд случаев проецирования сил на ось.
Вектор
силы F
(рис. 2.2) составляет с положительным
направлением оси х острый угол
.
Рис. 2.2
Чтобы найти проекцию, из начала и конца вектора силы опускаем перпендикуляры на ось oх; получаем
Fx = F cos α
Проекция вектора в данном случае положительна
Сила F (рис. 2.3) составляет с положительным направлением оси х тупой угол α.
Рис. 2.3
Тогда Fx = F cos α, но так как α = 1800 - φ,
Fx = Fcos α = Fcos1800 - φ =- Fcos φ.
Проекция силы F на ось oх в данном случае отрицательна.
Сила F (рис. 2.4) перпендикулярна оси oх.
Рис. 2.4
Проекция силы F на ось х равна нулю
Fx = F cos 90° = 0.
Силу, расположенную на плоскости хоу (рис. 2.5), можно спроектировать на две координатные оси ох и оу.
Рис. 2.5
Силу F можно разложить на составляющие: Fx и Fy. Модуль вектора Fx равен проекции вектора F на ось ox, а модуль вектора Fy равен проекции вектора F на ось oy.
Из ΔОАВ: Fx=F cos α, Fx=F sin α.
Из ΔОАС: Fx=F cos φ, Fx=F sin φ.
Модуль
силы
можно найти по теореме Пифагора:
.
Проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.
Рассмотрим сходящиеся силы F1, F2, F3, и F4, (рис. 2.6, а). Геометрическая сумма, или равнодействующая, этих сил F определяется замыкающей стороной силового многоугольника
Рис. 2.6
Опустим из вершин силового многоугольника на ось x перпендикуляры.
Рассматривая полученные проекции сил непосредственно из выполненного построения, имеем:
F= F1x+F2x+F3x+ F4x
или
,
где n ‑ число слагаемых векторов. Их проекции входят вышеуказанное уравнение с соответствующим знаком.
В плоскости геометрическую сумму сил можно спроецировать на две координатные оси, а в пространстве – соответственно на три.
2.3. Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого (рис. 2.7).
Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.
Если в системе три силы, образуется треугольник сил.
Рис. 2.7
При аналитическом способе определения равнодействующей условие равновесия, означающее равенство нулю равнодействующей, принимает следующую форму:
.
FΣ = 0.
Плоская система сходящихся сил находится в равновесии, если алгебраическая сумма проекций всех сил системы на любую ось равна нулю.
Следовательно, условие равновесия выглядит следующим образом:
Fx=0;
Fy=0.
В задачах координатные оси выбирают так, чтобы решение было наиболее простым. Желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.