
- •1. Номенклатура органических соединений
- •2. Углеводороды
- •2.1 Основные теоретические положения
- •Гомологический ряд и изомерия
- •Изомерия и номенклатура
- •Получение алканов
- •Химические свойства алканов
- •Применение
- •Октановое число
- •Цетановое число
- •Удельная теплота сгорания топлива
- •Контрольные вопросы
- •Общая характеристика
- •Химические свойства алкенов
- •Реакции присоединения
- •1.3. Алкины
- •1.3.1. Общая характеристика
- •Химические свойства алкинов
- •Реакции присоединения
- •Кислотные свойства
- •Реакции окисления
- •Способы получения
- •Общая характеристика одноядерных аренов
- •Химические свойства
- •Электрофильное замещение в бензольном кольце
- •Влияние заместителя в бензольном кольце на направление электрофильного замещения
- •Реакции присоединения
- •Радикальное замещение в алкилбензолах
- •Способы получения
- •Индивидуальные задания
- •. Спирты и фенолы (гидроксисоединения)
- •Контрольные задания №1
- •Контрольные задания №2
- •Контрольные задания №3
- •Альдегиды и кетоны (карбонильные соединения)
- •Контрольные задания
- •Карбоновые кислоты. Сложные эфиры. Жиры
- •Контрольные задания №1
- •Контрольные задания №2
- •Углеводы
- •Моносахариды
- •Дисахариды
- •Гетерополисахариды
- •Контрольные задания №4
- •Контрольные задания №5
- •Контрольные задания №1
- •Лабораторная работа № 1.
- •Лабораторная работа № 2.
- •Лабораторная работа № 3.
- •Лабораторная работа № 4.
- •Лабораторная работа № 5.
- •Лабораторная работа № 6.
- •Лабораторная работа № 7.
- •Лабораторная работа № 8.
- •Лабораторная работа № 9.
Изомерия и номенклатура
Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета.
Названия веществ, структурные формулы которых приведены выше, следующие: структура А 2-метилбутан
структура Б З-этилгексан
структура В 2,2,4-триметилпентан
структура Г З-метил-5-этилгептан
Получение алканов
1. Выделение углеводородов из природного сырья. Источниками предельных углеводородов, как вы уже знаете, являются нефть и природный газ. Основной компонент природного газа — простейший углеводород метан, который используется непосредственно или подвергается переработке.
Нефть, извлеченная из земных недр, также подвергается переработке, ректификации, крекингу. Больше всего углеводородов получают при переработке нефти и других природных источников. Но значительное количество ценных углеводородов получают искусственно, синтетическими способами.
2. Изомеризация. Наличие катализаторов изомеризации ускоряет образование углеводородов с разветвленным скелетом из линейных углеводородов:
Добавление катализаторов позволяет несколько уменьшить температуру, при которой протекает реакция.
3. Гидрирование (присоединение водорода) алкенов. Как уже было сказано, в результате крекинга образуется большое количество непредельных углеводородов с двойной связью — алкенов. Уменьшить их количество можно, добавив в систему водород и катализаторы гидрирования — металлы (платина, палладий, никель):
СН3–СН2-СН=СН2+Н2→СН3-СН2-СН2-СН3
Крекинг в присутствии катализаторов гидрирования с добавлением водорода называется восстановительным крекингом. Основными его продуктами являются предельные углеводороды.
В заключение добавим, что повышение давления при крекинге (крекинг высокого давления) позволяет уменьшить количество газообразных
(СН4—С4Н10) углеводородов и повысить содержание жидких углеводородов с длиной цепи 6—10 атомов углерода, которые составляют основу бензинов.
4. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:
2СН3СН2Вг+2Nа→СН3СН2СН2СН3+2NаВг
Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).
Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах, которых атом галогена присоединен к первичному атому углерода.
Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.
Химические свойства алканов
1. Реакции замещения. Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.
Приведем уравнения наиболее характерных реакций.
Галогенирование: СН4+С12→СН3Сl+HCl
В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:
СН3Сl+С12→HCl+СН2Сl2
дихлорметан хлористый метилен
СН2Сl2+Сl2→HCl+CHCl3 трихлорметан хлороформ
СНСl3+Сl2→HCl+ССl4 тетрахлорметан четыреххлористый углерод
Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А12О3, Сг2O3) при высокой температуре (400—600 °С) происходит отщепление молекулы водорода и образование алкена:
СН3—СН3→СН2=СН2+Н2
3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов — это свободно-радикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.
СН4 + 2O2 → СО2 + 2Н2O + 880кДж
Реакции термического расщепления лежат в основе промышленного процесса — крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.
При нагревании метана до температуры 1000 °С начинается пиролиз метана — разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.
4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:
5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных: