- •Конспект лекций (3 семестр)
- •Содержание
- •1 Полупроводниковые диоды
- •Обозначение:
- •1.1 Выпрямительный диод
- •Механизм сглаживания пульсаций:
- •1.2 Стабилитрон
- •Применение стабилитронов:
- •1.3 Варикап
- •Принцип работы схемы:
- •1.4 Фотодиод
- •Р hν ассмотрим фотодиодный режим:
- •Рассмотрим ве́нтильный режим:
- •Применение фотодиодов:
- •1.6 Светодиод
- •Принцип работы:
- •Конструктивно светодиоды выполняются:
- •Применение:
- •2 Оптроны
- •Оптрон с внутренней фотонной связью:
- •Оптрон с внешней фотонной связью:
- •Достоинства оптронов:
- •Недостатки оптронов:
- •3 Транзисторы
- •3.1 Биполярные транзисторы
- •Обозначение:
- •3.1.1 Назначение областей транзистора
- •3.1.2 Режимы работы транзистора
- •3.1.4 Принцип работы транзистора
- •3.1.5 Основные коэффициенты, характеризующие работу транзистора
- •3.1.6 Транзистор, как усилительный элемент
- •3.1.7 Схемы включения транзисторов
- •А) Общий эмиттер ( n-p-n)
- •Назначение элементов:
- •Как расставляются знаки у источников питания?
- •Б) Общая база (n-p-n)
- •В) Общий коллектор (эмиттерный повторитель)(n-p-n)
- •3.1.8 Статические характеристики биполярного транзистора Статические вах транзистора об
- •Статические вах транзистора оэ
- •3.1.9 Динамический режим работы транзистора
- •3.1.10 Первичные параметры транзистора
- •Пример расчета h-параметров транзистора оэ
- •Примечание:
- •3.2 Полевые транзисторы
- •Полевой транзистор содержит 3 электрода:
- •Полевые транзисторы бывают:
- •3.2.1 Полевой транзистор с p-n затвором
- •Обозначение:
- •Принцип действия полевого транзистора
- •Вах полевого транзистора с p-n затвором
- •Обозначение:
- •Достоинства полевых транзисторов::
- •Недостатки:
- •4 Тиристоры
- •4.1 Динисторы
- •Обозначение:
- •4.2 Тринисторы
- •Пример: ку 201а, ку 202а
- •Вах тринистора
- •5 Интегральные микросхемы (имс) логических элементов
- •5.1 Транзисторно-транзисторная логика (ттл)
- •Ттл с простым инвертором (и-не)
- •2.2 Эмиттерно-связанная логика (эсл)
- •Характерная особенность схемы:
- •Принцип работы переключателя тока:
- •5.4 Комплементарная моп-транзисторная логика (кмоп тл)
- •Кмоп тл (или-не)
- •Кмоп тл (и-не)
- •Преимущества кмоп тл перед моп тл:
- •Литература
4.2 Тринисторы
Если от одной из баз динистора сделать вывод и подавать через него прямое напряжение на эмиттерный переход, то ток тиристора увеличится (за счет роста инжекции ОНЗ в область базы). Причем, чем больше ток через такой управляющий электрод, тем ниже напряжение включения, т.е. можно регулировать момент включения прибора.
Тиристор с управляющим электродом называется тринистором.
а) Если управляющим электродом является база, ближайшая к катоду, то это будет тринистор с катодным управлением.
Пример: ку 201а, ку 202а
б) Если управляющим электродом является база, ближайшая к аноду, то это будет тринистор с анодным управлением.
Вах тринистора
Iа
Iупр2
Iупр1
Iупр=0
о
Uа
Uавкл2 Uавкл1
Iупр2 > Iупр1; Uавкл2 < Uавкл1
При нулевом управляющем токе ВАХ тринистора такая же, как и ВАХ динистора.
При управляющем токе не равном нулю ВАХ тринистора смещается влево, т.к. усиливается инжекция одного из эмиттеров и пробой КП произойдет при меньшем анодном напряжении. Чем больше управляющий ток, тем меньше напряжение включения.
Для включения тринистора требуется незначительный управляющий ток (десятки mA), незначительное напряжение управления, т.е. включение тринистора производится с небольшой затратой мощности. При этом в анодной цепи могут протекать токи в десятки и сотни ампер, при напряжении в тысячи вольт. Таким образом, тринистор – прибор, обладающий очень эффективным управлением.
5 Интегральные микросхемы (имс) логических элементов
В основе цифровых схем лежат простейшие транзисторные ключи, характеризующиеся двумя устойчивыми состояниями (для биполярного транзистора – это режим насыщения и режим отсечки).
Рассмотрим ВАХ транзистора ОЭ:
IК
нагрузочная
прямая
IБ4
ЕП/RК
А
IБ3
IБ2
насыщение
А` IБ1
0
IБ=0
UКЭ
отсечка
ЕП
UКЭ НАС
UКЭ
ОТС
Если транзистор находится в режиме насыщения (полностью открыт), то его выходное напряжение равно
- мало.
Обычно
принимают
и считают это малое напряжение логическим
нулем (
).
Если транзистор находится в режиме отсечки (полностью закрыт), то его выходное напряжение равно
-
велико, что соответствует логической
единице
(
).
Таким образом, имеем двоичную систему исчисления.
Существует три основных логических элемента: И (операция умножения), ИЛИ (операция сложения), НЕ (операция отрицания).
