
- •Теория эксперимента
- •Содержание
- •Введение
- •1 Планирование экспериментов
- •1.1 Основные понятия и определения теории эксперимента
- •Общие положения
- •1.1.2 Параметр оптимизации
- •1.1.3 Факторы
- •1.1.4 Выбор модели
- •1.2 Полный факторный эксперимент
- •1.2.1 Принятие решений перед планированием эксперимента
- •1.2.2 Полный факторный эксперимент типа
- •1.2.3 Свойства полного факторного эксперимента типа
- •1.2.4 Полный факторный эксперимент и математическая модель
- •1.3 Дробный факторный эксперимент
- •1.3.1 Минимизация числа опытов
- •1.3.2 Дробная реплика
- •1.3.3 Выбор полуреплик. Генерирующие соотношения и определяющие контрасты
- •1.3.4 Реплики большой дробности
- •2 Проведение эксперимента
- •2.1 Анкета для сбора априорной информации
- •2.2 Реализация плана эксперимента
- •2.3 Ошибки параллельных опытов
- •2.4 Дисперсия параметра оптимизации
- •2.5 Проверка однородности дисперсий
- •2.6 Рандомизация
- •3 Обработка результатов эксперимента методом регрессионного анализа
- •3.1 Зависимость между случайными величинами
- •3.2 Обработка результатов пассивного эксперимента методом
- •3.2.1 Основные понятия классического регрессионного анализа
- •3.2.2 Статистический анализ уравнения регрессии
- •3.3 Особенности обработки результатов эксперимента методом
- •3.3.1 Особенности расчета коэффициентов регрессии
- •3.3.2 Особенности статистического анализа уравнения регрессии
- •3.3.3 Интерпретация уравнения регрессии
- •4 Обработка результатов эксперимента методом дисперсионного анализа
- •4.1 Основные понятия дисперсионного анализа
- •4.2 Однофакторный дисперсионный анализ
- •4.3 Алгоритм расчета однофакторного дисперсионного анализа
- •4.4 Двухфакторный дисперсионный анализ
- •Примечания.
- •Решение.
- •Список использованных источников
- •Приложение a
- •Приложение б
- •Приложение в
- •Значимые ранги множественного рангового критерия Дункана при
- •Приложение г
3 Обработка результатов эксперимента методом регрессионного анализа
3.1 Зависимость между случайными величинами
При изучении процессов функционирования сложных систем приходится иметь дело с целым рядом одновременно действующих случайных величин. Для уяснения механизма явлений, причинно-следственных связей между элементами системы и т.д., по полученным наблюдениям мы пытаемся установить взаимоотношения этих величин.
В математическом анализе зависимость, например, между двумя величинами выражается понятием функции y=f(x), где каждому значению одной переменной соответствует только одно значение другой. Такая зависимость носит название функциональной.
Гораздо сложнее обстоит дело с понятием зависимости случайных величин. Как правило, между случайными величинами (случайными факторами), определяющими процесс функционирования сложных систем, обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической, или вероятностной. При этом величину изменения случайного фактора Y, соответствующую изменению величины Х, можно разбить на два компонента. Первый связан с зависимостью Y от X, а второй с влиянием "собственных" случайных составляющих величин Y и X. Если первый компонент отсутствует, то случайные величины Y и X являются независимыми. Если отсутствует второй компонент, то Y и X зависят функционально. При наличии обоих компонент соотношение между ними определяет силу или тесноту связи между случайными величинами Y и X.
Существуют различные показатели, которые характеризуют те или иные стороны стохастической связи. Так, линейную зависимость между случайными величинами X и Y определяет коэффициент корреляции.
, (3.1)
где
– математические
ожидания случайных величин X
и Y.
– средние
квадратические отклонения случайных
величин X
и Y.
Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или убывать) по линейному закону. Если случайные величины X и Y связаны строгой линейной функциональной зависимостью, например,
y=b0+b1x1,
то
коэффициент корреляции будет равен
;
причем знак соответствует знаку
коэффициента b1
.Если величины X
и Y
связаны произвольной стохастической
зависимостью, то коэффициент корреляции
будет изменяться в пределах
.
Следует
подчеркнуть, что для независимых
случайных величин коэффициент корреляции
равен нулю. Однако коэффициент корреляции
как показатель зависимости между
случайными величинами обладает серьезными
недостатками. Во-первых, из равенства
r
= 0 не следует независимость случайных
величин X
и Y
(за исключением случайных величин,
подчиненных нормальному закону
распределения, для которых r
= 0 означает
одновременно и отсутствие всякой
зависимости). Во- вторых, крайние значения
также не очень полезны, так как
соответствуют не всякой функциональной
зависимости, а только строго линейной.
Полное
описание зависимости Y
от X
, и притом выраженное в точных функциональных
соотношениях, можно получить, зная
условную функцию распределения
.
Следует отметить, что при этом одна из наблюдаемых переменных величин считается неслучайной. Фиксируя одновременно значения двух случайных величин X и Y, мы при сопоставлении их значений можем отнести все ошибки лишь к величине Y. Таким образом, ошибка наблюдения будет складываться из собственной случайной ошибки величины Y и из ошибки сопоставления, возникающей из-за того, что с величиной Y сопоставляется не совсем то значение X, которое имело место на самом деле.
Однако отыскание условной функции распределения, как правило, оказывается весьма сложной задачей. Наиболее просто исследовать зависимость между Х и Y при нормальном распределении Y, так как оно полностью определяется математическим ожиданием и дисперсией. В этом случае для описания зависимости Y от X не нужно строить условную функцию распределения, а достаточно лишь указать, как при изменении параметра X изменяются математическое ожидание и дисперсия величины Y.
Таким образом, мы приходим к необходимости отыскания только двух функций:
(3.2)
Зависимость условной дисперсии D [Y/X=x] от параметра Х носит название сходастической зависимости. Она характеризует изменение точности методики наблюдений при изменении параметра и используется достаточно редко.
Зависимость условного математического ожидания M[Y/x=x] от X носит название регрессии, она дает истинную зависимость величин Х и У, лишенную всех случайных наслоений. Поэтому идеальной целью всяких исследований зависимых величин является отыскание уравнения регрессии, а дисперсия используется лишь для оценки точности полученного результата.