
- •3. Первый принцип спецификации эконометрических моделей. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •4. Типы переменных в экономических моделях. Второй и третий принципы спецификации эконометрических моделей (на примере макромодели). Типы переменных в эконометрических моделях.
- •5. Типы экономических моделей. Спецификация и преобразование к приведённой форме динамических открытых моделей (на примере).
- •6. Структурная и приведённая формы спецификации эконометрических моделей (на примере).
- •7. Отражение в модели влияния на эндогенные переменные неучтённых факторов. Правила включения случайных возмущений (на примере эконометрической модели Самуэльсона-Хикса делового цикла экономики).
- •8. Классическая парная регрессионная модель: спецификация, определение.
- •9. Схема Гаусса-Маркова (на примере модели Оукена: спецификация, экономический смысл переменных и параметров, схема Гаусса-Маркова в виде системы уравненийи в матричном виде).
- •10. Оценка параметров парной регрессии методом наименьших квадратов(суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений).
- •11. Матричная форма мнк: спецификация парной регрессионной модели в матричной форме, необходимые условия экстремума в матричном виде, вывод оценки вектора параметров модели.
- •13. Теорема Гаусса - Маркова.
- •15. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •16. Линейная модель множественной регрессии. Порядок ее оценивания мнк в Excel. Смысл выходной статистической информации функции линейн.
- •17. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
- •21. Скорректированный коэффициент детерминации
- •23. Алгоритм проверки качества спецификации парной регрессионной модели в Excel (с помощью функции «линейн»).
- •24. Алгоритм проверки адекватности парной регрессионной модели.
- •25. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
- •27. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •28. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности.
- •29. Алгоритм теста Голдфелда-Квандта на наличие или отсутствие гетероскедастичности случайных возмущений в парной регрессионной модели.
- •30. Алгоритм теста Глейзера на наличие или отсутствие гетероскедастичности случайных возмущений.
- •31. Способы корректировки гетероскедастичности. Взвешенный метод наименьших квадратов.
- •32. Способы корректировки гетероскедастичности. Доступный взвешенный метод наименьших квадратов.
- •33. Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
- •Оценка параметров обобщенной регрессионной модели
- •34. Автокорреляция случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции.
- •37. Количественные характеристики вектора случайных возмущений в условиях автокорреляции первого порядка (вывод формул).
- •38.Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу.
- •39.Проблема мультиколлинеарности в моделях множественной регрессии
- •Признаки мультиколлинеарности
- •40. Виды мультиколлинеарности. Строгая и нестрогая мультиколлинеарность
- •Последствия частичной мультиколлинеарности
- •45. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
- •46. Фиктивные переменные: определение, назначение, типы.
- •50.Использование фиктивных переменных для определения структурных изменений в экономике.
- •52. Модели временных рядов
- •53. Модели нестационарных временных рядов с трендом и сезонной составляющей и их идентификация.
- •54. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели; проблема мультиколлинеарности.
- •Проблема мультиколлинеарности.
- •55. Системы одновременных уравнений: проблема оценивания структурных параметров.
- •56. Системы одновременных уравнений: нарушение предпосылки теоремы Гаусса-Маркова о некоррелированности объясняющих переменных и случайных возмущений (на примере макромодели), последствия.
- •58. Идентификация отдельных уравнений системы одновременных уравнений: ранговое условие.
- •60. Косвенный метод наименьших квадратов: алгоритм метода, условия применения.
- •62. Оценка моделей с распределенными лагами с конечным числом лагов.
- •63. Оценка моделей с распределенными лагами с бесконечным числом лагов.
- •64. Оценка моделей с распределенными лагами: метод Алмон
- •65. Тест Дарбина на наличие (отсутствие) автокорреляции вектора возмущений в авторегрессионных моделях.
25. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
Наряду с проверкой значимости параметров регрессии, важной
задачей является проверка адекватности регрессионной модели —
обоснованности выбора формы взаимосвязи эндогенной и
экзогенных переменных.
Алгоритм проверки включает в себя:
Все наблюдения делятся на 2 части: обучающую и контролирующую выборки. Обучающая выборка включает, как правило, 90-95% наблюдений.
Оценка модели производится по обучающей выборке
Строится доверительный интервал для значения эндогенной переменной из контролирующей выборки. Чтобы проверить адекватность модели, необходимо выяснить, накрывается ли оцененное наблюдаемое значение эндогенной переменной из контролирующей выборки доверительным интервалом или нет.Доверительный интервал строится по формуле:
. Чтобы найти
используем следующую формулу:
, где X-матрица значений регрессоров из обучающей выборки, дополненная столбцом единиц, если спецификация содержит свободный член, X0- матрица значений регрессоров из контролирующей выборки, дополненная столбцом единиц, если спецификация модели содержит свободный член.
Выполняется проверка: если выборочное значение эндогенной переменной из контролирующей выборки накрывается доверительным интервалом, то модель признается адекватной.
26. Процедура точечного прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной.(данного вопроса мы на парах не рассматривали, в интернете и в учебниках ничего другого не нашла)
Эконометрические модели предназначены прежде всего для объяснения (прогноза) эндогенных переменных по известным значениям предопределенных переменных. Прогнозировать по оцененной модели можно лишь тогда, когда она признана адекватной. Модель будем называть адекватной, если прогнозы значений эндогенных переменных согласуются в определенном смысле с наблюденными значениями переменных. Таким образом, процесс прогнозирования и проверка адекватности тесно взаимосвязаны.
Сущность процедуры прогнозирования обсудим на примере модели Оукена:
Объект-оригинал наблюден в n опытах и получена выборка: (w1,y1), (w2,y2), ..., (wn,yn). (33.2) По предположению величины (33.2) связаны между собой следующей системой уравнений наблюдения объекта (33.3):
y1= a0+a1*w1+u1
........................ (33.3)
yn= a0+a1*wn+un
По предположению случайные возмущения в уравнениях (33.3) удовлетворяют всем предпосылкам теоремы Г.-М. Пусть по смыслу задачи необходимо выполнить прогноз эндогенной переменной модели y при w=w0. Символом ~y0 обозначим прогноз (оценку) величины y0, которая согласно модели (33.1) связана с величиной w0 равенством (33.4): y0= a0+a1*w0+u0. В уравнении (33.3) известна только величина w0, а левая часть неизвестна. Поставим задачу по построению такого прогноза ~y0, который удовлетворял бы условиям: 1) E(~y0- y0)=0 (33.4); 2) E(~y0- y0)2=Sy02(стремится к min) (33.5). Таким образом, прогноз величины y должен быть вычислен по значению w0 переменной w обязан удовл. одновременно условиям 33.4 и 33.5. При построении прогноза в распоряжении экономиста имеется выборка 33.2 и предполагается, что модель 33.1 является справедливой. Справедлива след теорема: Наилучший прогноз y0~ вычисляется по правилу Y0~=a0~+a1~*w0. Выражение оптимального прогноза означает, что для вычисления величины y0~(оптимального прогноза) следует оценить модель 33.1 методом МНК, а затем подставить в оценку уравнения регрессии значение w0 экзогенной переменной w. Прогноз 33.7 называется точечным оптимальным прогнозом, т.к. результатом прогноза является конкретное значение (точка, число) величины y.