
- •3. Первый принцип спецификации эконометрических моделей. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •4. Типы переменных в экономических моделях. Второй и третий принципы спецификации эконометрических моделей (на примере макромодели). Типы переменных в эконометрических моделях.
- •5. Типы экономических моделей. Спецификация и преобразование к приведённой форме динамических открытых моделей (на примере).
- •6. Структурная и приведённая формы спецификации эконометрических моделей (на примере).
- •7. Отражение в модели влияния на эндогенные переменные неучтённых факторов. Правила включения случайных возмущений (на примере эконометрической модели Самуэльсона-Хикса делового цикла экономики).
- •8. Классическая парная регрессионная модель: спецификация, определение.
- •9. Схема Гаусса-Маркова (на примере модели Оукена: спецификация, экономический смысл переменных и параметров, схема Гаусса-Маркова в виде системы уравненийи в матричном виде).
- •10. Оценка параметров парной регрессии методом наименьших квадратов(суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений).
- •11. Матричная форма мнк: спецификация парной регрессионной модели в матричной форме, необходимые условия экстремума в матричном виде, вывод оценки вектора параметров модели.
- •13. Теорема Гаусса - Маркова.
- •15. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •16. Линейная модель множественной регрессии. Порядок ее оценивания мнк в Excel. Смысл выходной статистической информации функции линейн.
- •17. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
- •21. Скорректированный коэффициент детерминации
- •23. Алгоритм проверки качества спецификации парной регрессионной модели в Excel (с помощью функции «линейн»).
- •24. Алгоритм проверки адекватности парной регрессионной модели.
- •25. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
- •27. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •28. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности.
- •29. Алгоритм теста Голдфелда-Квандта на наличие или отсутствие гетероскедастичности случайных возмущений в парной регрессионной модели.
- •30. Алгоритм теста Глейзера на наличие или отсутствие гетероскедастичности случайных возмущений.
- •31. Способы корректировки гетероскедастичности. Взвешенный метод наименьших квадратов.
- •32. Способы корректировки гетероскедастичности. Доступный взвешенный метод наименьших квадратов.
- •33. Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
- •Оценка параметров обобщенной регрессионной модели
- •34. Автокорреляция случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции.
- •37. Количественные характеристики вектора случайных возмущений в условиях автокорреляции первого порядка (вывод формул).
- •38.Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу.
- •39.Проблема мультиколлинеарности в моделях множественной регрессии
- •Признаки мультиколлинеарности
- •40. Виды мультиколлинеарности. Строгая и нестрогая мультиколлинеарность
- •Последствия частичной мультиколлинеарности
- •45. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
- •46. Фиктивные переменные: определение, назначение, типы.
- •50.Использование фиктивных переменных для определения структурных изменений в экономике.
- •52. Модели временных рядов
- •53. Модели нестационарных временных рядов с трендом и сезонной составляющей и их идентификация.
- •54. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели; проблема мультиколлинеарности.
- •Проблема мультиколлинеарности.
- •55. Системы одновременных уравнений: проблема оценивания структурных параметров.
- •56. Системы одновременных уравнений: нарушение предпосылки теоремы Гаусса-Маркова о некоррелированности объясняющих переменных и случайных возмущений (на примере макромодели), последствия.
- •58. Идентификация отдельных уравнений системы одновременных уравнений: ранговое условие.
- •60. Косвенный метод наименьших квадратов: алгоритм метода, условия применения.
- •62. Оценка моделей с распределенными лагами с конечным числом лагов.
- •63. Оценка моделей с распределенными лагами с бесконечным числом лагов.
- •64. Оценка моделей с распределенными лагами: метод Алмон
- •65. Тест Дарбина на наличие (отсутствие) автокорреляции вектора возмущений в авторегрессионных моделях.
62. Оценка моделей с распределенными лагами с конечным числом лагов.
Формулировка вопроса:
Оценка моделей с распределенными лагами с конечным числом лагов.
В эконометрике, модель с распределённым лагом - это модель временного ряда, в которой в уравнение регрессии включено как текущее значение объясняющей переменной, так и значения этой переменной в предыдущих периодах (иными словами, лаговые переменные).
Спецификацию модели с распределенными лагами с числом лагов k можно записать в следующем виде:
В лаговых моделях параметр β0 называется краткосрочным мультипликатором, так как он характеризует изменение среднего значения Y под воздействием единичного изменения переменной X, относящейся к тому же моменту времени.
Сумма
-
долгосрочный мультипликатор, так как
она характеризует изменение Y
под воздействием единичного изменения
переменной Х в каждом из рассматриваемых
временных периодов.
При оценке параметров данной модели применяется метод замены переменных:
Таким образом, спецификация представляет собой спецификацию модели множественной регрессии вида:
, параметры которой оцениваются при помощи обычного МНК.
63. Оценка моделей с распределенными лагами с бесконечным числом лагов.
С
пецификация
модели с бесконечным числом лагов:
Метод геометрической прогрессии
П
редполагается,
что параметры при лаговых значениях
регрессоров убывают в геометрической
прогрессии:
Параметр λ характеризует скорость убывания коэффициентов с увеличением лага: чем дальше по времени удалены значения регрессоров, тем меньше их влияние на значение эндогенной переменной в текущий момент времени t.
М
одель
с учетом данных предположений запишется
в виде:
(1)
С пецификацию с бесконечным числом членов можно свести к спецификации с конечным числом при помощи преобразования Койка.
(1)
З
апишем
данную спецификацию для момента (t-1)
и умножим ее на λ:
(2)
(
1)-(2):
И
ли
Т аким образом, при помощи преобразования Койка модель с конечным числом лагов сводится к авторегрессионной модели:
Плюс метода: позволяет устранить мультиколлинеарность.
Минусы метода: 1) среди регрессоров появляется лаговая эндогенная переменная, что нарушает одну из предпосылок Гаусса-Маркова;
2) если для случайных возмущений исходной модели εt и εt-1 справедлива предпосылка о некоррелированности, то для случайного возмущения преобразованной модели будет иметь место автокорреляция.
64. Оценка моделей с распределенными лагами: метод Алмон
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L:
yt=?0+?1xt+?2xt–1+…+?Lxt–L+?t. (1)
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных ?i от величины лага i аппроксимируется полиномиальной функцией:
а) первого порядка ?i=c0+c1*i
б) второго порядка
в) третьего порядка
г) в общем случае полиномиальной функцией порядка P:
Алмон доказал, рассчитать оценки коэффициентов
намного проще, чем найти оценки непосредственно коэффициентов ?i. Подобный метод оценивания коэффициентов ?i называется полиномиальной аппроксимацией.
2) каждый коэффициент модели (1) можно выразить следующим образом:
?1=c0;
?2=c0+c1+…+cP;
?3=c0+2c1+4c2+…+2PcP;
?4=c0+3c1+9c2+…+3PcP;
…
?L=c0+Lc1+L2c2+…+LPcP.
Подставим полученные выражения для коэффициентов ?i в модель (1):
yt=?0+c0xt+( c0+c1+…+cP)xt–1+…+( ?L=c0+Lc1+L2c2+…+LPcP)xt–L+?t.
3) в полученном выражении перегруппируем слагаемые:
Обозначим слагаемые в скобках при коэффициентах
как новые переменные:
С учётом новых переменных модель примет вид:
yt=?0+c0z0+c1z1+…+cPzP+?t. (2)
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
5) найдём оценки коэффициентов
модели (1), используя соотношения, полученные на первом шаге.
К основным недостаткам метода Алмон относятся:
1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага L можно с помощью вычисления показателей тесноты связи, например, линейных парных коэффициентов корреляции, между результативной переменной у и лаговым значением факторной переменной х. Если показатель тесноты связи является значимым, то данную переменную необходимо включить в модель с распределённым лагом. Порядок максимального значимого показателя тесноты связи принимается в качестве максимальной величины лага L;
2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;
3) если между факторные переменные коррелируют друг с другом, то новые переменные
которые являются линейной комбинацией факторных переменных x, будут также коррелировать между собой. Поэтому проблема мультиколлинеарности в преобразованной модели (2) устранена не полностью. Однако мультиколлинеарность новых переменных zi в меньшей степени отражается на оценках неизвестных коэффициентов ?i исходной модели (1), чем при использовании традиционного метода наименьших квадратов к данной модели. Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.