
- •3. Первый принцип спецификации эконометрических моделей. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •4. Типы переменных в экономических моделях. Второй и третий принципы спецификации эконометрических моделей (на примере макромодели). Типы переменных в эконометрических моделях.
- •5. Типы экономических моделей. Спецификация и преобразование к приведённой форме динамических открытых моделей (на примере).
- •6. Структурная и приведённая формы спецификации эконометрических моделей (на примере).
- •7. Отражение в модели влияния на эндогенные переменные неучтённых факторов. Правила включения случайных возмущений (на примере эконометрической модели Самуэльсона-Хикса делового цикла экономики).
- •8. Классическая парная регрессионная модель: спецификация, определение.
- •9. Схема Гаусса-Маркова (на примере модели Оукена: спецификация, экономический смысл переменных и параметров, схема Гаусса-Маркова в виде системы уравненийи в матричном виде).
- •10. Оценка параметров парной регрессии методом наименьших квадратов(суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений).
- •11. Матричная форма мнк: спецификация парной регрессионной модели в матричной форме, необходимые условия экстремума в матричном виде, вывод оценки вектора параметров модели.
- •13. Теорема Гаусса - Маркова.
- •15. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели
- •16. Линейная модель множественной регрессии. Порядок ее оценивания мнк в Excel. Смысл выходной статистической информации функции линейн.
- •17. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
- •21. Скорректированный коэффициент детерминации
- •23. Алгоритм проверки качества спецификации парной регрессионной модели в Excel (с помощью функции «линейн»).
- •24. Алгоритм проверки адекватности парной регрессионной модели.
- •25. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
- •27. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной
- •28. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности.
- •29. Алгоритм теста Голдфелда-Квандта на наличие или отсутствие гетероскедастичности случайных возмущений в парной регрессионной модели.
- •30. Алгоритм теста Глейзера на наличие или отсутствие гетероскедастичности случайных возмущений.
- •31. Способы корректировки гетероскедастичности. Взвешенный метод наименьших квадратов.
- •32. Способы корректировки гетероскедастичности. Доступный взвешенный метод наименьших квадратов.
- •33. Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
- •Оценка параметров обобщенной регрессионной модели
- •34. Автокорреляция случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции.
- •37. Количественные характеристики вектора случайных возмущений в условиях автокорреляции первого порядка (вывод формул).
- •38.Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу.
- •39.Проблема мультиколлинеарности в моделях множественной регрессии
- •Признаки мультиколлинеарности
- •40. Виды мультиколлинеарности. Строгая и нестрогая мультиколлинеарность
- •Последствия частичной мультиколлинеарности
- •45. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
- •46. Фиктивные переменные: определение, назначение, типы.
- •50.Использование фиктивных переменных для определения структурных изменений в экономике.
- •52. Модели временных рядов
- •53. Модели нестационарных временных рядов с трендом и сезонной составляющей и их идентификация.
- •54. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели; проблема мультиколлинеарности.
- •Проблема мультиколлинеарности.
- •55. Системы одновременных уравнений: проблема оценивания структурных параметров.
- •56. Системы одновременных уравнений: нарушение предпосылки теоремы Гаусса-Маркова о некоррелированности объясняющих переменных и случайных возмущений (на примере макромодели), последствия.
- •58. Идентификация отдельных уравнений системы одновременных уравнений: ранговое условие.
- •60. Косвенный метод наименьших квадратов: алгоритм метода, условия применения.
- •62. Оценка моделей с распределенными лагами с конечным числом лагов.
- •63. Оценка моделей с распределенными лагами с бесконечным числом лагов.
- •64. Оценка моделей с распределенными лагами: метод Алмон
- •65. Тест Дарбина на наличие (отсутствие) автокорреляции вектора возмущений в авторегрессионных моделях.
31. Способы корректировки гетероскедастичности. Взвешенный метод наименьших квадратов.
Запишем спецификацию множественной регрессионной модели в виде: Yt=β 1Xt1+β2Xt2+…+β jXtj+…+βkXtk+εt=Σkj=1 βjXtj+εt Пусть случайное возмущение гетероскедастично. ^ Этап преобразования переменных 1)Одним из основных способов корректировки гетероскедастичности является использование метода взвешенных наименьших квадратов. Метод Взвешенных наименьших квадратов применяется в том случае, когда известны диагональные элементы автоковариационной матрицы Cεεвектора возмущений ε(σt2, t=1, …,n). В этом случае уравнение наблюдений можно преобразовать следующим образом. Поделим каждый член на ско возмущения: Yt/σt=Σkj=1βj(Xtj/σt)+εt/σt, t=1,…,n В результате преобразования спецификация принимает вид спецификации классической регрессионной модели: Y ̽t=Σkj=1βjX ̽t+ε ̽t Определим количественные характеристики случайного возмущения ε ̽t:
Математическое ожидание:
E{ ε ̽t }=E{εt/σt}=(1/σt)E{εt}=0
Дисперсия случайного члена:
Var{ ε ̽t }=Var{εt/σt}=(1/σt2)Var{εt}= σt2/ σt2=1, Таким образом, ε ̽t ̴ N(0,1), и при помощи данного преобразования случайное возмущение приобрело свойство гомоскедастичности. Остатки регрессии для данной модели определяются по правилу: e ̽t=(Yt/σt)-Σkj=1β͠j (Xtj/σt)=1/ σt(Yt- Σkj=1β͠j Xtj)=1/ σt(Yt-Y͠t), поэтому в критерий отбора Σe ̽t2 каждое слагаемое входит со своим весом 1/ σt.
32. Способы корректировки гетероскедастичности. Доступный взвешенный метод наименьших квадратов.
Запишем спецификацию множественной регрессионной модели в виде: Yt=β 1Xt1+β2Xt2+…+β jXtj+…+βkXtk+εt=Σkj=1 βjXtj+εt Пусть случайное возмущение гетероскедастично. ^ Этап преобразования переменных В случае, если значения σt, t=1,…, n неизвестны, используется доступный обобщенный МНК. В этом методе выполняется оценка неизвестных дисперсий, но при условии, что на структуру автоковариационной матрицы накладываются дополнительные ограничения (предпосылки). Наиболее часто используется следующая предпосылка: ско возмущения пропорционально одному из регрессоров, например, σt=μXti, или Xti=λσt, где λ=1/μ, t=1,…,n, тогда после деления на Xtiлевой и правой частей исходной спецификации, получим: Yt/ Xti=Σkj=1βj(Xtj/Xti)+ εt/Xti, и, если ввести новые переменные вида: Xtj̽ = Xtj/Xti; Yt̽ = Yt/ Xti; ε̽t=εt/Xti, t=1,…n; j=1,…k, то можно перейти к оценке классической регрессионной модели со спецификацией: Yt̽= Σkj=1 βjX ̽tj+ ε̽t. В этом случае дисперсия случайного возмущения будет постоянной для всех наблюдений: E{ εt/Xtk}=E{ε t/ λσt }2 =(1/λ 2)(σ 2t / σ 2t )= 1/λ 2,где λ=1/μ. Таким образом, проблема гетероскедастичности устранима.
33. Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
Обобщенная регрессионная модель имеет следующую спецификацию: Y=Xβ+ε –(1), здесь Y=(Y1,Y2,…,Yn)T-(n×1) вектор-столбец значений эндогенной переменной,
Xn×k – детерминированная матрица регрессоров полного ранга,
β k,1 = (β1,β2,…,βk)T- вектор-столбец параметров модели,
ε n,1 = (ε1,ε2,…,εn) – вектор-столбец случайных возмущений.
Относительно случайных возмущений регрессии принимаются следующие предпосылки:
E(ε)=0;
(σ12 Ω12 … Ω1n)
Cεε=Ω= (Ω21 σ22 … Ω1n)
( ………………)
(Ωn1 Ωn2 … σn2)
- автоковариационная матрица вектора возмущений,
Ωts=Ωst=Cov(εt,εs) не равно 0.