
- •1. Механика
- •1.1. Кинематика поступательного и вращательного движения
- •1.1.1. Предмет механики
- •1.1.2. Механическое движение. Модели в механике
- •1.1.3. Определение положения точки в пространстве.Траектория. Путь. Перемещение
- •1.1.4. Скорость
- •1.1.5. Ускорение. Нормальное и тангенциальное ускорение
- •1.1.6. Скорость и путь при поступательном движении
- •1.1.7. Кинематические характеристики вращательного движения. Угловая скорость и угловое ускорение
- •1.1.8. Связь между линейной и угловой скоростью, линейным и угловым ускорением
- •1.2.1. Силы в механике
- •1.2.2. Масса и импульс тела
- •1.2.3. Законы Ньютона
- •1.2.4. Закон сохранения импульса
- •1.2.5. Работа в механике. Мощность
- •1.2.6. Механическая энергия
- •1.2.7. Кинетическая энергия
- •1.2.8. Консервативные силы
- •1.2.9. Потенциальная энергия
- •Полная механическая энергия тела
- •1.2.10. Закон сохранения механической энергии
- •1.2.11. Соударение двух тел
- •Абсолютно упругий удар шаров
- •Абсолютно неупругий удар шаров
- •2.1. Электростатика
- •2.1.1. Электрический заряд. Закон Кулона
- •Закон Кулона
- •2.1.2. Напряженность электрического поля. Принцип суперпозиции
- •Принцип суперпозиции
- •2.1.3. Поток вектора напряженности электрического поля. Теорема Гаусса
- •Теорема Гаусса
- •2.1.4. Работа по перемещению заряда в электрическом поле
- •2.1.5. Потенциальная энергия заряда в электростатическом поле
- •2.1.6. Потенциал. Связь между напряженностью электрического поля и потенциалом
- •2.2.1. Понятие об электрическом токе
- •2.2.2. Сила и плотность тока
- •2.2.3. Закон Ома для однородного участка цепи
- •2.2.4. Закон Ома в дифференциальной форме
- •2.2.5. Объяснение закона Ома
- •2.2.6. Электродвижущая сила (эдс) источника. Закон Ома для участка цепи, содержащего эдс
- •2.2.7. Закон Ома для замкнутой цепи
- •2.2.8. Тепловое, химическое и силовое действие тока
- •2.3. Магнетизм
- •2.3.1. Характеристики магнитного поля
- •2.3.2. Магнитное поле в веществе. Классификация магнетиков
- •2.3.3. Закон Био - Савара - Лапласа
- •2.3.4. Магнитное поле в центре кругового тока
- •2.3.5. Магнитное поле прямого тока
- •2.3.6. Сила Лоренца. Сила Ампера
- •2.3.7. Поток вектора магнитной индукции
- •2.3.8. Явление электромагнитной индукции. Закон Фарадея - Ленца
- •3.1. Колебания
- •3.1.1. Характеристики колебательного процесса
- •3.1.2. Уравнение гармонических колебаний
- •3.1.3. Дифференциальное уравнение гармонических колебаний
- •3.1.4. Скорость и ускорение при гармоническом колебательном движении
- •3.1.5. Энергия гармонических колебаний
- •3.1.6. Векторная диаграмма
- •3.1.7. Сложение гармонических колебаний одинакового направления и одинаковой частоты
- •3.2. Волны
- •3.2.1. Волновые процессы
- •3.2.2. Характеристики волнового процесса
- •3.2.3. Уравнение плоской гармонической волны
- •3.2.4. Энергия упругой волны
- •3.2.5. Электромагнитные волны
- •3.2.6. Световые волны
- •3.3. Волновая оптика
- •3.3.1. Явление интерференции света
- •3.3.2. Условия максимума и минимума интенсивности при интерференции
- •3.3.3. Расчет интерференционной картины от двух когерентных источников
- •3.3.4. Оптическая разность хода
- •3.3.5. Интерференция в тонких пленках
- •3.3.6. Явление дифракции. Принцип Гюйгенса - Френеля
- •3.3.7. Зоны Френеля. Дифракция света на одной щели
- •3.3.8. Дифракция Фраунгофера на дифракционной решетке
- •3.3.9. Поляризация света
- •4.1. Молекулярно-кинетические представления
- •4.2. Уравнение состояния идеального газа
- •4.3. Закон Дальтона для смеси газов
- •4.4. Изопроцессы
- •4.5. Молекулярно-кинетический смысл абсолютной температуры
- •4.6. Число степеней свободы
- •4.7. Внутренняя энергия идеального газа
- •4.8. Работа в термодинамике
- •4.9. Первое начало термодинамики
- •4.10. Кпд тепловой машины
- •4.11.Второе начало термодинамики. Энтропия
- •5. Квантовая физика
- •5.1. Законы фотоэффекта
- •5.2. Уравнение Эйнштейна для фотоэффекта
- •5.3. Фотоны и их свойства
- •5. 4. Закономерности в спектре атома водорода
- •5.5. Постулаты Бора
- •5.6. Корпускулярно-волновой дуализм микрочастиц
- •5.7. Статистическая трактовка волн де Бройля
- •5.8. Уравнение Шредингера
- •5.9. Атом водорода по теории Шредингера
- •5.10. Квантово-механическое объяснение закономерностей в спектре атома водорода
- •5.11. Вынужденное излучение. Лазеры
1. Механика
1.1. Кинематика поступательного и вращательного движения
1.1.1. Предмет механики
Механикой называется раздел физики, в котором изучаются закономерности механического движения и причины, вызывающие или изменяющие это движение. Механика делится на три раздела: кинематику, динамику и статику.
Кинематика изучает движение без учета причин, его вызывающих.
Динамика изучает движение с учетом причин, его вызывающих.
Статика - наука о равновесии.
Существует классическая, релятивистская и квантовая механика.
Классическая механика изучает движение макроскопических тел со скоростями, много меньшими скорости света в вакууме (v<<c, c=3·108м/c).
Релятивистская механика (или теория относительности) изучает движение тел со скоростями, соизмеримыми со скоростью света в вакууме.
Квантовая механика изучает движение микрочастиц (отдельные атомы, элементарные частицы). Изучение нашего курса начнем с классической механики.
1.1.2. Механическое движение. Модели в механике
Механическим движением называется процесс изменения взаимного расположения тел или их частей в пространстве и с течением времени. Для описания движения в механике используются физические модели. Простейшими моделями в механике являются материальная точка и абсолютно твердое тело.
Материальной точкой называется обладающее массой тело, размерами которого можно пренебречь в условиях данной задачи. Например, при вычислении траектории, по которой Земля движется вокруг Солнца, Землю можно рассматривать как материальную точку, так как ее радиус в 24 000 раз меньше радиуса ее орбиты. При рассмотрении движения тел по поверхности Земли она должна рассматриваться как протяженный объект.
Любое тело можно рассматривать как совокупность материальных точек.
Абсолютно твердым телом называется тело, деформациями которого можно пренебречь в условиях данной задачи.
Тело может двигаться поступательно и вращательно.
Поступательным движением называется такое движение, при котором любая прямая, проведенная в теле, остается параллельной самой себе. При поступательном движении все точки тела движутся одинаковым образом. Поэтому достаточно рассмотреть движение одной точки тела, например, центра тяжести, чтобы говорить о движении тела в целом.
Вращательным движением называется движение, при котором все точки тела описывают окружности. Центры этих окружностей лежат на прямой, называемой осью вращения. В общем случае движение твердого тела можно представить как результат сложения поступательного и вращательного движений.
1.1.3. Определение положения точки в пространстве.Траектория. Путь. Перемещение
Для того чтобы описывать движение материальной точки, надо ввести систему отсчета. Системой отсчета называется совокупность системы координат и часов, связанных с телом, по отношению к которому изучается движение.
Положение точки в пространстве можно описать двумя способами:
1) векторным, т. е. задать радиус-вектор
.
Радиус-вектором
называется вектор, проведенный из начала
координат в данную точку;
2) координатным
- задать три координаты - x,y,z
(рис. 1.1).
Рис.1.1
Модуль радиус-вектора вычисляется по теореме Пифагора
При перемещении точки в пространстве она описывает некоторую кривую, называемую траекторией материальной точки.
Расстояние, отсчитанное вдоль траектории, представляет собой длину пути ΔS (рис. 1.2) или просто пройденный путь.
Рис.1.2
Перемещением называется вектор
,
соединяющий начальное и конечное
положение материальной точки (рис. 1.2).
Вектор перемещения показывает откуда
и куда переместилась точка.
Перемещение
,
скорость
,
ускорение
являются
кинематическими характеристиками
движения материальной точки, а также
кинематическими характеристиками
поступательного движения абсолютно
твердого тела.