
- •Раздел 4. Методы механической обработки материалов при изготовлении деталей и конструктивных элементов самолетов.
- •Глава 4.1. Обработка деталей и конструктивных элементов давлением.
- •Глава 4.2. Механическая обработка заготовок.
- •Глава 5.. Процессы термической обработка металлических деталей………………………
- •Глава 6. Гальванические металлические и неметаллические покрытия……………………
- •Глава 7. Лазерные технологии в производстве авиационной техники……………………..
- •Раздел 6. Изготовление конструктивных элементов ла из композиционных материалов.
- •Глава 6.1. Основные свойства авиационных композиционных материалов………..
- •Глава 6.2. Изготовление макета конструктивного элемента (мастер модели)……
- •Глава 6.3. Общепромышленное и ручное ламинирование…………………………………
- •Глава 6.4. Применение композитов в конструкциях самолётов, вертолётов и двигателей.
- •Глава 6.5. Клей вк – 9 ост 1 90281 – 86………………………………………………
- •Раздел 1. Общие вопросы производства авиационной техники
- •Глава 1.1. Особенности самолета и самолетостроительного производства.
- •Глава 1.2. Структура предприятия, его производственный процесс, объем и программа выпуска самолетов
- •Глава 1.3. Типы производства.
- •Раздел 2. Основы технологии производства конструктивных элементов ла.
- •Глава 2.1. Основные понятия и определения.
- •Глава 2.2. Технологические методы обеспечения качества самолета как объекта производства.
- •Глава 2.3. Технологические методы обеспечения заданного ресурса.
- •Глава 2.4. Технологические методы создания конструкции минимальной массы.
- •Глава 2.5. . Классификация технологических процессов.
- •Глава 2.6. Особенности технологии производства конструктивных элементов (кэ).
- •Глава 2.7. Резервы повышения производительности труда при
- •Глава 2.8. Комплексная технологическая классификация изготовления деталей ла.
- •Принципиальные схемы технологических процессов изготовления
- •Термообработка – закалка
- •3. Для деталей из не упрочняемых термообработкой материалов
- •2. Для деталей из упрочняемых термообработкой материалов
- •Для деталей из упрочняемых термообработкой материалов с длительным сроком старения
- •Для деталей, изготавливаемых
- •Для деталей, изготавливаемых
- •Принципиальные схемы технологического процесса изготовления деталей из точных специальных заготовок удалением излишнего материала
- •Специальные точные заготовки в отожженном состоянии
- •Расконсервация - очистка заготовок
- •1.Для деталей из металлов и
- •Глава 2.9. Технологичность конструкции изделия. (тки).
- •2.9.1. Общие сведения.
- •2.9.2.Качественная оценка технологичности конструкции изделия.
- •2.9.3. Количественная оценка тки.
- •2.9.4. Основные показатели.
- •2.9.4.1. Дополнительные показатели.
- •2.9.4.2. Технологические требования к конструкции конструктивных элементов.
- •Раздел 3. Основы технологического обеспечения качества изготовления конструктивных элементов.
- •Глава 3.1. Точность технологического процесса.
- •Глава 3.2. Оценка точности технологического процесса изготовления кэ.
- •Глава 3.3. Качество поверхности изготовленных деталей и конструктивных элементов.
- •Глава 3.4. Влияние шероховатости поверхности на эксплуатационные
- •Раздел 4. Рациональные методы изготовления заготовок для деталей и конструктивных элементов ат.
- •Глава 4.1. Типы заготовок и методы их изготовления.
- •Глава 4.2. Методы литья.
- •4.2.1. Литьё в песчаные формы.
- •4.2.2. Литьё в металлические формы.
- •4.2.3. Литьё по выплавляемым моделям.
- •4.2.4. Литье в оболочковые формы.
- •4.2.5. Литье под давлением .
- •4.2.6. Литье под низким давлением (0,01—0,08 мн/м2).
- •4.2.7. Центробежное литьё.
- •4.2.8. Особенности конструирования литых деталей.
- •4.2.9. Технологичность деталей получаемых литьём.
- •Раздел 4. Методы механической обработки материалов при изготовлении деталей и конструктивных элементов самолетов.
- •Глава 4.1. Обработка деталей и конструктивных элементов давлением.
- •4.1.1. Общие положения.
- •4.1.2. Прокатка
- •4.1.3. Ковка
- •4.1.3. Прессование
- •4.1.4. Горячая штамповка.
- •4.1.5. Штамповка в закрытых штампах.
- •4.1.6. Холодная штамповка.
- •4.1.7. Холодная высадка.
- •4.1.8. Холодная формовка.
- •4.1.9. Холодная листовая штамповка.
- •4.1.10. Гибка листового материала.
- •4.1.11. Вытяжка листового материала.
- •4.1.12. Формовка листового материала.
- •4.1.13. Вырезание заготовок и деталей ножницами и в штампах.
- •Глава 4.2. Механическая обработка заготовок.
- •4.2.1. Общие положения
- •4.2.2. Обработка на токарных станках.
- •4.2.1.1. Технологичность деталей обрабатываемых на станках токарной группы.
- •4.2.2.Обработка деталей на фрезерных станках.
- •4.2.2.1.Технолгичность деталей обрабатываемых фрезерованием.
- •4.2.2.3. Универсальные делительные головки.
- •4.2.3. Обработка на протяжных станках.
- •4.2.4. Обработка на сверлильных станках.
- •4.2. 5.Обработка на строгальных и долбёжных станках.
- •4.2.6. Обработка заготовок на шлифовальных станках.
- •4.2.6.1. Основные схемы шлифования.
- •4.2.6.2. Технологические требования, предъявляемые к заготовкам обрабатываемым на шлифовальных станках.
- •4.2.7. Методика обработки заготовок хонингованием и алмазным выглаживанием (обкаткой шариками).
- •4.2.8. Слесарная обработка заготовок, деталей и конструкционных элементов самолетов.
- •Глава 5.. Процессы термической обработка металлических деталей.
- •5.1. Термическая обработка деталей из конструкционных сталей.
- •5.1.1. Строение чистых металлов.
- •5.2. Диаграмма состояния сплавов железа с углеродом.
- •5.3. Изменение структуры стали при быстром охлаждении.
- •5.3. Термическая обработка сталей.
- •5.3.1. . Отжиг стали.
- •5.3.2. Нормализация стали.
- •5.3.3. Закалка стали.
- •5.3.4. Отпуск стали.
- •5.4. Химико – термическая обработка сталей.
- •5.4.1. Цементация стали.
- •5.4.2. Азотирование стали.
- •5.4.3. Цианирование стали.
- •5.4.4. Хромирование алюминиевых сплавов и стали.
- •5.4.5.. Алитирование стали.
- •5.4.6. Силицирование.
- •5.4.7. Борирование.
- •5.6. Термическая обработка деталей из титановых сплавов.
- •5.7. Термическая обработка деталей из алюминиевых сплавов.
- •5.8. Термическая обработка деталей из магниевых сплавов.
- •5.9. Уменьшение деформаций и короблений при термообработке.
- •5.10. Определение механических свойств.
- •Глава 6. Гальванические металлические и неметаллические покрытия.
- •6.1. Обработка поверхности перед покрытием и после него.
- •6.2. Методы контроля покрытий.
- •Глава 7. Лазерные технологии в производстве авиационной техники.
- •7.1. Лазерная резка.
- •7.2. Лазерная сварка.
- •7.3. Лазерная термообработка (закалка, легирование).
- •7.4. Технология и оборудование для лазерного упрочнения быстроизнашивающихся деталей.
- •7.5. Лазерное модифицирование быстроизнашивающихся деталей.
- •7.6. Лазерная наплавка.
- •7.7. Заключение.
- •Глава 8. Обозрение (историческое) плазово - шаблонного метода увязки форм и размеров изготавливаемых объемных конструктивных элементов.
- •8.1. Теоретические плазы.
- •8.2. Производственные шаблоны.
- •Раздел 5 . Сборка узлов, агрегатов и конструктивных элементов, изготавливаемого ла.
- •Глава 5.1. Основные пути обеспечения точности изготовления деталей и конструктивных элементов для их сборки.
- •5.1.1. Основы базирования и базы.
- •5.1.2. Способы базирования.
- •5.1.3. Методы обеспечения точности сборки.
- •5.1.3.1. Размерные цепи.
- •5.1.3.2. Выявление и построение размерных цепей.
- •5.1.3.3. Расчёт размерных цепей.
- •Глава 5.2. Основные методы сборки конструктивных элементов ла.
- •5.2.1. Технологичность сборки.
- •5.2.2. Технологические требования к конструкции сопрягаемых деталей.
- •5.2.3. Построение схем сборки.
- •Глава 5.3. Технологичность соединений.
- •Глава 5.4. Разъемные соединения.
- •5.4.1. Болтовое соединение
- •5.4.2. Шпилечные соединения.
- •5.4.3. Винтовые соединения.
- •5.4.4.Шпоночные соединения.
- •5.4.5. Шлицевые соединения.
- •Глава 5.5. Унифицированные стыки.
- •5.5.1. Стык хомутовый.
- •5.5.2. Байонетный стык.
- •5.5.3. Шлицевой стык.
- •5.5.4. Клиновой стык.
- •Глава 5.6. Неразъемные соединения.
- •5.6.1. Клёпанные соединения.
- •5.6.1.1. Виды заклёпочных соединений.
- •5.6.1.2. Технологические требования к заклёпочным соединениям.
- •5.6.1.3. Герметизация заклёпочных соединений.
- •5.6.2.. Сварные соединения.
- •5.6.2.1.Типы сварных соединений.
- •5.6.2.2. Технологичность сварных соединений.
- •5.6.2.3. Технологические рекомендации к сварным конструкциям.
- •5.6.2.4. Дефекты в сварных швах и способы их контроля.
- •5.6.3. Пайка и технологичность паянных соединений.
- •5.6.3.1. Припои и методы пайки.
- •5.6.3.2. Основные способы пайки.
- •5.6.3.3.Технологические особенности паянных соединений.
- •Раздел 6. Изготовление конструктивных элементов ла из композиционных материалов.
- •Глава 6.1. Основные свойства авиационных композиционных материалов.
- •6.1.1. Особенности композитов.
- •6.1.2. Состав композитных материалов.
- •6.1.3 Технические характеристики волокнистых армирующих материалов.
- •6.1.4. Стеклянные волокна.
- •6.1.5. Органические волокна.
- •6.1.6. Углеродные волокна.
- •6.1.6. Эпоксидная смола эд – 20 гост10587 – 93.
- •6.1.8. Типовые рецептуры приготовления эпоксидных клеевых паст.
- •6.1.9. Разделительные смазки.
- •6.1.10. Гелькоут.
- •6.1.10.1. Характеристики применяемых гелькоутов.
- •6.1.10.2. Условия подготовки гелькоута.
- •Глава 6.2. Изготовление макета конструктивного элемента (мастер модели).
- •6.2.1. Изготовление макетов (матриц) на обрабатывающих центрах.
- •6.2.2. Изготовление макетов из пенопласта.
- •6.2.3. Изготовление матриц из стеклопластика. Требования к конструкции матриц из стеклопластика.
- •Глава 6.3. Общепромышленное и ручное ламинирование.
- •6.3.1. Ручное ламинирование с последующей вакуумной формовкой кэ объемной формы.
- •6.3.2. Особенности формования кэ из углепластиков.
- •6.3.3. Метод получения многослойных изделий из препрегов.
- •6.3.4. Формование препрегов с использованием металлических штампов или стеклопластиковых матриц.
- •6.3.5. Автоклавное или вакуумное формование конструктивных элементов из композитных материалов.
- •Глава 6.4. Применение композитов в конструкциях самолётов, вертолётов и двигателей.
- •6.4.1. Концепция «интегральное качество» при конструировании.
- •6.4.2. Примеры использования композитов в конструкциях ла.
- •6.4.3. Применение композитов в конструкциях пассажирских самолетов.
- •6.4.4. Композитные корпусные детали обшивки авиадвигателей.
- •Глава 6.5. Клей вк – 9 ост 1 90281 – 86.
Глава 5.5. Унифицированные стыки.
Быстросъемные унифицированные соединения функционально законченных сборочных единиц, применяемых в конструкциях перспективных изделий (хомутовые, клиновые, байонетные, эксцентриковые) применяются при сборке изделий и обеспечивают надёжное крепление соединяемых сборочных единиц (узлов, агрегатов, секций и т.п.).
Соединения являются типовыми и используются в конструкциях перспективных изделий исходя из конкретных технических требований, применяемых материалов и габаритов соединяемых узлов.
5.5.1. Стык хомутовый.
Стык хомутовый (рис.5.38) состоит из хомута и двух цилиндрических корпусов, сопряжённых между собой цилиндрическими поверхностями, выполненными по скользящей посадке и обеспечивающими их центрирование. Соприкасающиеся торцевые поверхности имеют трапецеидальные кольцевые выступы, наклонные поверхности которых сопрягаются с ответными поверхностями хомута. Соединение корпусов осуществляется при стягивании хомута стяжным болтом. При этом боковые поверхности хомута, выполненные с 18°30', перемещаясь по трапецеидальным кольцевым выступам корпусов, стягивают их в осевом направлении с усилием, необходимым для предотвращения появления зазора при эксплуатационных нагрузках. Для диаметров корпусов до 120 мм применяется хомут, состоящий из собственного хомута и стяжного винта.
При соединении корпусов диаметром более 200 мм используются хомуты, состоящие из двух половин и двух стяжных винтов. Соединение достаточно надежно с точки зрения эксплуатации, но имеет недостаток, состоящий в том, что наличие стяжных винтов заставляет развивать элементы хомутов, выходящие за пределы калибра изделия, отрицательно влияющие на аэродинамические характеристики.
Рис.5.38.
5.5.2. Байонетный стык.
Байонетный стык применяется как для стыковки узлов или секций имеющих цилиндрические поверхности, так и для стыковки узлов на плоскости. В зависимости от назначения и конструктивных особенностей изделия, байонетные стыки бывают шлицевыми и болтовыми.
5.5.3. Шлицевой стык.
Шлицевой стык в зависимости от действующих нагрузок и условий эксплуатации, бывает однорядный и многорядный, а шлицы трапецеидальными или прямоугольными (рис.5.39. и 5.40.). На внутренней поверхности охватывающего участка корпуса прорезаны кольцевые канавки трапецеидальной формы. В соответствии с особенностями эксплуатации трапецеидальные выступы срезаны в нескольких местах, образуя на цилиндрической поверхности корпуса поперечные щлицы. В середине выступающих частей просверлены отверстия и зенковки для головок винтов. На наружной поверхности охватываемого участка корпуса так же прорезаны кольцевые канавки трапецеидальной формы. По окружности выступов трапецеидальной формы сформированы поперечные шлицы, а на середине выступающих участков выполнены резьбовых отверстия. В комплект стыка входят также необходимое количество винтов. Соединение стыка производится в следующей последовательности: охватываемый стык вводится в охватывающий, когда поперечные шлицы одного вводятся в выемки другого и корпуса поворачиваются относительно друг друга на некоторый угол. Обычно угол поворота соответствует ширине шлица охватывающего стыка. После поворота корпусов относительно друг друга, до совмещения отверстий охватывающего корпуса с резьбовыми отверстиями охватываемого корпуса
Рис.5.39.
в них вставляют винты и затягивают стык. При этом боковые поверхности охватывающего и охватываемого стыков плотно прилегают друг к другу и выбираются осевые и радиальные зазоры за счет нежесткости конструкции. Данный вид многозаходного стыка применяется для соединения цилиндрических поверхностей до диаметра не более 200 – 250 мм. и больших изгибающих моментах. Однозаходный байонетный стык применяется для стыковки цилиндрических поверхностей диаметром до 480-500мм., когда поперечные нагрузки и крутящие моменты относительно малы Рис.4.18 , и не требуется высокой точности взаимного положения стыкуемых корпусов.
К
ак
правило, угловая ширина охватываемого
стыка
несколько меньше чем охватывающего
стыка
.
Поворот одного корпуса относительно
другого осуществляется примерно на
1/2
и в этом положении осуществляется их
фиксация специальным стопорным
устройством. Рис.5.40.
Болтовое байонетное соединение Рис.5.41. применяется для соединения и взаимной координации сборочных единиц на плоскости, и также является быстро разъёмным. На торцевой поверхности одной из деталей узла (секции) изготавливают фигурные отверстия, расположенные на одной окружности, центр которой совпадает с осью изделия. На ответной торцевой поверхности закрепляют фигурные болты, оси которых размещаются на аналогичной окружности. Конструктивно головка фигурного болта выполнена конической, и её диаметр сопрягается с большим диаметром фигурного отверстия по ходовой посадке.
Рис. 5.41.
Шейка фигурного болта имеет диаметр меньше чем головка, и также сопрягается с радиусным пазом фигурного отверстия по ходовой посадке. Кольцевое утолщение на теле фигурного болта выполнено диаметром больше чем головка и имеет лыски под ключ. Стыковка двух узлов осуществляется в следующей последовательности: большой диаметр фигурных отверстий одного из узлов, совмещается с головками фигурных болтов второго узла, после чего их перемещают навстречу друг друга до упора в цилиндрическое утолщение фигурного болта. Таким образом выдерживается необходимое расстояние между торцами двух поверхностей, равное толщине цилиндрического утолщения фигурных болтов, и в этом положении один из узлов поворачивается на угол определяемый центрами цилиндрических поверхностей фигурного отверстия. В этом положении узлы фиксируют стопорным устройством, ограничивающим их разворот в противоположном направлении.