Задание 1
Решить задачу линейного программирования обычным симплекс-методом и методом искусственного базиса (найти оба экстремума):
Вариант  | 
			Задача  | 
			Вариант  | 
			Задача  | 
		
 
 1  | 
			F=x1+4x2+x3max (min) 
  | 
			
 
 16  | 
			F=2x12x22x3 max (min) 
  | 
		
 
 2  | 
			F=2x1+3x2x3 max (min) 
  | 
			
 
 17  | 
			F=3x12x22x3 max (min) 
  | 
		
 
 3  | 
			F=x1x2+x3 max (min) 
  | 
			
 
 18  | 
			F=2x1+8x2+3x3 max (min) 
  | 
		
 
 4  | 
			F=5x1+2x2+x3 max (min) 
 
  | 
			
 
 19  | 
			F=6x1+7x2+9x3 max (min) 
  | 
		
 
 5  | 
			F=x18x23x3 max (min) 
 
  | 
			
 
 20  | 
			F=5x1+2x2+x3 max (min) 
  | 
		
 
 6  | 
			F=x13x2x3 max (min) 
  | 
			
 
 21  | 
			F=6x1x2+3x3 max (min) 
  | 
		
 
 7  | 
			F=x1+4x2+3x3 max (min) 
 
  | 
			
 
 22  | 
			F=2x1+2x2x3 max (min) 
  | 
		
 
 8  | 
			F=4x13x22x3 max (min) 
 
  | 
			
 
 23  | 
			F=x1+3x2+x3 max (min) 
  | 
		
 
 9  | 
			F=4x1+x2+3x3 max (min) 
  | 
			
 
 24  | 
			F=2x1+3x2+2x3 max (min) 
  | 
		
 
 10  | 
			F=x13x22x3 max (min) 
 
  | 
			
 
 25  | 
			F=2x1+2x25x3 max (min) 
  | 
		
 
 11  | 
			F=3x1+2x2+2x3 max (min) 
  | 
			
 
 26  | 
			F=x1+2x2+2x3 max (min) 
  | 
		
 
 12  | 
			F=3x1+2x2+3x3 max (min) 
  | 
			
 
 27  | 
			F=5x1+7x2+9x3 max (min) 
  | 
		
 
 13  | 
			F=x1+2x2+x3 max (min) 
  | 
			
 
 28  | 
			F=x1+x24x3 max (min) 
  | 
		
 
 14  | 
			F=2x1+x2+2x3 max (min) 
  | 
			
 
 29  | 
			F=3x1+2x23x3 max (min) 
  | 
		
 
 15  | 
			F=6x1+7x2+9x3 max (min) 
  | 
			
 
 30  | 
			F=3x1+x2+2x3 max (min) 
  | 
		
