
Задание 1
Решить задачу линейного программирования обычным симплекс-методом и методом искусственного базиса (найти оба экстремума):
Вариант |
Задача |
Вариант |
Задача |
1 |
F=x1+4x2+x3max (min)
|
16 |
F=2x12x22x3 max (min)
|
2 |
F=2x1+3x2x3 max (min)
|
17 |
F=3x12x22x3 max (min)
|
3 |
F=x1x2+x3 max (min)
|
18 |
F=2x1+8x2+3x3 max (min)
|
4 |
F=5x1+2x2+x3 max (min)
|
19 |
F=6x1+7x2+9x3 max (min)
|
5 |
F=x18x23x3 max (min)
|
20 |
F=5x1+2x2+x3 max (min)
|
6 |
F=x13x2x3 max (min)
|
21 |
F=6x1x2+3x3 max (min)
|
7 |
F=x1+4x2+3x3 max (min)
|
22 |
F=2x1+2x2x3 max (min)
|
8 |
F=4x13x22x3 max (min)
|
23 |
F=x1+3x2+x3 max (min)
|
9 |
F=4x1+x2+3x3 max (min)
|
24 |
F=2x1+3x2+2x3 max (min)
|
10 |
F=x13x22x3 max (min)
|
25 |
F=2x1+2x25x3 max (min)
|
11 |
F=3x1+2x2+2x3 max (min)
|
26 |
F=x1+2x2+2x3 max (min)
|
12 |
F=3x1+2x2+3x3 max (min)
|
27 |
F=5x1+7x2+9x3 max (min)
|
13 |
F=x1+2x2+x3 max (min)
|
28 |
F=x1+x24x3 max (min)
|
14 |
F=2x1+x2+2x3 max (min)
|
29 |
F=3x1+2x23x3 max (min)
|
15 |
F=6x1+7x2+9x3 max (min)
|
30 |
F=3x1+x2+2x3 max (min)
|