Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.81 Mб
Скачать

§1.7. Intel core I на микроархитектуре Ivy Bridge

Ivy Bridge — кодовое название 22-нм версии микроархитектуры Sandy Bridge.Релиз первых процессоров на данной архитектуре состоялся 23 апреля 2012 года, поступление в продажу — 29 апреля.

4 мая 2011 г. Intel сообщила, что 22-нм процессоры Intel будут использовать транзисторы с вертикально расположенным затвором (FinFET (Fin Field Effect Transistor, также известные как 3D-транзисторы и «транзисторы с трёхмерной структурой затвора»). Согласно оценкам компании производительность 22-нм Tri-Gate транзисторов на 37 % выше производительности планарных 32-нм структур. При этом энергопотребление у них до 50 % меньше. Тем не менее, несмотря на пониженное энергопотребление, оверклокеры, испытав разгонный потенциал новых процессоров, пришли к неутешительному заключению, что процессоры, произведенные по техпроцессу 22-нм на повышенных частотах греются сильнее своих предшественников. Это связано в основном с уменьшением размеров кристалла, а как следствие - меньшей площади контакта кристалла с теплоотводящий крышкой, что приводит к перегревам и нестабильной работе. На штатных частотах процессоры Ivy Bridge действительно холоднее.

Новые процессоры используют ту же архитектуру, что и выпущенные ранее Sandy Bridge. Специалисты Intel говорят только о незначительных улучшениях, обеспечивающих преимущество в производительности на уровне 5% . Основным нововведением стал перевод ядра на 22-нм техпроцесс. По сравнению с применявшимся ранее 32-нм это должно было обеспечить значительное снижение площади ядра, энергопотребления и тепловыделения. Так, кристалл нового процессора стал меньше сразу на 35%. В сравнении с весьма похожим по конструкции Sandy Bridge его площадь уменьшена с 216 до 160 кв. мм. Это особенно впечатляет, с учетом того, что специалисты Intel применили гораздо более сложное графическое ядро (общее количество транзисторов увеличилось с 995 млн до 1.4 млрд, в основном именно за счет iGPU). Если бы Ivy Bridge стал просто «22-нм Sandy», площадь ядра могла бы быть еще меньше. Но это и так рекорд последних лет – для сравнения можно привести пару CPU, выполненных по 32-нм процессу и содержащих схожее количество транзисторов. Площадь ядра AMD Bulldozer в восьмиядерном варианте составляет 325 кв. мм при 1.2 млрд транзисторов, площадь «урезанного» четырехъядерного Sandy Bridge-E – 294 кв.мм при 1.27 млрд транзисторов.

§1.8. Intel core I на микроархитектуре Haswell

Haswell — кодовое название процессорной микроархитектуры четвёртого поколения процессоров Intel Core, разработанной Intel, которая является преемницей Ivy Bridge. Выпускается по нормам 22-нм техпроцесса с использованием FinFET-транзисторов. Релиз первых процессоров на данной архитектуре состоялся 1­­­­­­—4 июня 2013 года на COMPUTEX 2013.

Полупроводниковый кристалл процессора Haswell включает в себя четыре вычислительных ядра, графический ускоритель, массив кэш-памяти третьего уровня, и «системный агент», в который входят двухканальный контроллер ОЗУ стандарта DDR3, контроллеры шин DMI и PCI Express, а также трансмиттеры цифрового изображения. Процессорные ядра, и встроенная видеокарта используют общую разделяемую кэш-память, а для связи между внутренними блоками используется высокоскоростная кольцевая шина данных, которая впервые появилась в процессорах Intel Sandy Bridge. Сами же вычислительные ядра Haswell претерпели минимум изменений в сравнении с Ivy Bridge, во всяком случае, дизайн вычислительного конвейера остался прежним, а все доработки носят характер оптимизаций. Например, были улучшены механизмы выборки и предсказания ветвлений, увеличена пропускная способность диспетчера задач путем добавления двух дополнительных портов, оптимизирован размер буфера TLB (translation lookaside buffer) в кэше L2, а также уменьшены задержки при работе технологий виртуализации. Небольшим изменениям подверглась работа блоков, обрабатывающих векторные инструкции, которые получили поддержку новых инструкций AVX2, ускоряющих операции криптографии, хеширования и обработку мультимедиа. Также, вдвое, по сравнению с Ivy Bridge, увеличилась глубина выборки данных из кэшей L1 и L2 за такт, а значит, в оптимизированных задачах новые процессоры Haswell могут быть заметно быстрее своих предшественников. Но самой неожиданной из инновацией в архитектуре Intel Haswell стала размещение на полупроводниковом кристалле интегрального регулятора напряжения. По мнению разработчиков только таким образом можно достичь максимально гибкого управления электропитанием, которое является залогом высокой энергоэффективности.