Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции КЛА.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.67 Mб
Скачать

Лекция № 7

Конструкция фюзеляжа самолета

Назначение фюзеляжа самолета и требования предъявляемые к нему.

Конструктивно-силовые схемы фюзеляжей

Фюзеляж предназначен для размещения пассажиров, экипажа, их багажа, а также большого

количество грузов, если самолет грузопассажирский.

У современных самолётов лобовое сопротивление фюзеляжа составляет 20-40% от общего

сопротивления самолета. Для уменьшения лобового сопротивления габаритные размеры

должны быть малыми, а форма удобообтекаемая.

Фюзеляж характеризуется размерами, формой поперечного сечения, видом сбоку и удлинением.

Основные преимущества ферменных фюзеляжей перед балочны­ми— простота изготовления, удобство монтажа, осмотра и ремонта оборудования, размещенного на фюзеляже. К недостаткам относят несовершенство аэродинамических форм, малую жесткость, малый срок службы, невозможность полностью использовать внутренний объем для размещения грузов. В настоящее время ферменные кон­струкции применяют редко и в основном на легких самолетах.

Балочные фюзеляжи представляют собой балку обычно оваль­ного или круглого сечения, в которой на изгиб и кручение работают подкрепленная обшивка и элементы каркаса. Встречаются три раз­новидности балочных фюзеляжей: лонжеронно-балочный, стрингерно-балочный (полумонокок), скорлупно-балочный (монокок). Балочные конструкции фюзеляжей выгоднее ферменных, так как силовая часть у них образует обтекаемую поверхность, причем силовые элементы размещают по периферии, оставляя внутреннюю полость свободной. Это позволяет получить меньший мидель. Жест­кая работающая обшивка создает гладкую неискажаемую поверх­ность, уменьшающую лобовое сопротивление. Балочные фюзеляжи легче ферменных.

Конструкция фюзеляжа.

Каркас лонжеронно-балочного фюзеляжа образуют лонжероны, стрингеры и шпангоуты. Каркас обшит дюралюминиевыми листами (обшивкой).

Каркас стрингерно-балочного фюзеляжа (рис. 7.5) состоит из часто поставленных стрингеров и шпангоутов, к которым крепятся металлическая обшивка большей, чем у лонжеронно-балочных фюзеляжей, толщины.

Скорлупно-балочный фюзеляж (рис. 7.6) не имеет элементов продольного набора и состоит из толстой обшивки 1, подкреплен­ной шпангоутами 2.

В настоящее время преобладающим типом фюзеляжей являет­ся стрингерно-балочный.

Стрингеры — это элементы продольного набора каркаса фюзе­ляжа, которые связывают между собой элементы поперечного набора — шпангоуты. Стрингеры воспринимают главным образом продольные силы и подкрепляют жесткую обшивку. По конструк­тивным формам стрингеры фюзеляжа подобны стрингерам крыла. Расстояние между ними зависит от толщины обшивки и колеблется в пределах 80—250 мм. Размеры сечения стрингеров изменяются как по периметру контура, так и по длине фюзеляжа в зависимости от характера и нагрузки на каркас фюзеляжа.

Лонжероны — это также элементы продольного набора каркаса фюзеляжа, которые, работая на сжатие —растяжение, восприни­мают (частично) моменты, изгибающие фюзеляж. Как видно по задачам и условию работы, лонжероны фюзеляжа подобны стрин­герам. Конструктивное выполнение лонжеронов чрезвычайно раз­нообразно. Они представляют собой гнутые или прессованные про­фили различных сечений, на самолетах большой грузоподъемности их склепывают из нескольких профилей и листовых элементов.

Шпангоуты — элементы поперечного набора фюзеляжа, они придают ему заданную форму поперечного сечения, обеспечивают поперечную жесткость, а также воспринимают местные нагрузки. В ряде случаев к шпангоутам крепятся перегородки, разделяющие фюзеляж на отсеки и кабины.

Шпангоуты разделяют на нормальные и силовые. Силовые шпангоуты устанавливают в местах приложения сосредоточенных нагрузок, например в местах крепления крыла к фюзеляжу, стоек шасси, частей оперения.

Нормальные шпангоуты (рис. 7.7) собирают из дуг, штампован­ных из металлического листа. Сечение нормальных шпангоутов чаще всего швеллерное, иногда Z-образное и реже тавровое. Сило­вые шпангоуты склепывают из отдельных профилей и листовых элементов. Иногда их изготавливают на мощных прессах из алюминиевого сплава. Расстояние между шпангоутами обычно колеблется в пределах от 200—650 мм. Обшивка выполняется из листов дюралюминия или титана раз­личной толщины от 0,8 до 3,5 мм и крепятся к элементам каркаса заклепками либо приклеивается. Листы обшивки соединяют между собой по стрингерам и шпангоутам либо встык, либо внахлёст.

Вырезы в обшивке фюзеляжа балочного типа резко уменьшают прочность конструкции. Поэтому для сохранения необходимой прочности обшивку у вырезов подкрепляют усиленными стрингера­ми и шпангоутами. Небольшие вырезы подкрепляют усиленными стрингера­ми и шпангоутами

Рис. 7.7. Нормальные кольцевые шпангоуты, отштампованные из листового материала швеллерного (а) или Z-образного (б) сечений: / — шпангоут; 2 — стрингер; 3 — обшивка; 4 — уголок


Рис. 7.8. Технологические разъемы фюзеляжа:

1, 2, 3—носовая, центральная и хвостовая части

Окна пассажирской кабины делают прямоугольной или круг­лой формы, как правило,

они име­ют двойные стекла. Очень часто в герметических кабинах нагрузку от избыточного давления в кабине воспринимает внутреннее стек­ло, а при его разрушении наружное. Межстекольное пространство через осушительную систему, предотвращающую стекла от запоте­вания и замерзания, связано с полостью герметической кабины. Стекла уплотняют с помощью мягкой морозоустойчивой резины, иногда невысыхающей замазкой.

ЛЕКЦИЯ № 8

Конструкция и работа шасси

Схемы шасси. Основные параметры шасси.

Для обеспечения необходимой устойчивости и маневренности самолета во время движения его по взлетно-посадочной полосе (ВПП) опорные точки шасси должны быть размещены на опреде­ленном расстоянии друг от друга и от центра тяжести самолета.

Для устойчивого положения самолета на земле необходимы минимум три опоры. В зависимости от расположения опор относи­тельно центра тяжести самолета различают следующие основные схемы (рис. 10.1): с хвостовой опорой, с передней опорой и вело­сипедное шасси. У шасси с хвостовой опорой основные опоры рас­положены впереди центра тяжести самолета симметрично относи­тельно его продольной оси, а хвостовая опора позади центра тяжести.

У самолета, оснащенного шасси с передней опорой, основные опоры расположены позади центра тяжести самолета симметрично относительно его продольной оси, передняя опора расположена в плоскости симметрии самолета впереди центра тяжести.

У самолетов с шасси велосипедного типа центр тяжести находит­ся примерно на равном расстоянии от колес или колесных тележек, которые располагаются в продольной плоскости самолета одно по­зади другого. Боковые опоры, расположенные на концах крыла, ударную нагрузку при посадке и взлете не воспринимают. Боковые опоры поддерживают крыло при кренах самолета во время сто­янки и рулении по аэродрому. Шасси велосипедного типа применя­ют на самолетах с тонким профилем крыла (шасси убирается в фюзеляж, а небольшие боковые опоры в крыло).

Рис. 8.1. Схемы шасси:

а — с хвостовой опорой б — с передней опорой; в — велосипедное;

1 — основные колеса; 2— хвостовое колесо; 3— носовое колесо;

4 — подкрыльные колеса

в)

Наиболее широко распространено на современных самолетах шасси с передней опорой, что объясняется следующими преиму­ществами:

возможностью приземления на большей скорости по сравнению с самолетом, имеющим шасси с хвостовой опорой, так как при этом носовая стойка предохраняет самолет от «капота» (заваливания на нос), более энергично тормозятся колеса, предотвращается и «козление» самолета (центр тяжести располагается впереди основ­ных колес) и при приземлении на основные колеса угол атаки и коэффициент Су крыла уменьшаются;

хорошей путевой устойчивостью при пробеге и разбеге; горизонтальным положением оси фюзеляжа обеспечивается хо­роший обзор экипажу, создаются

удобства для пассажиров, об­легчается загрузка самолета, реактивные двигатели размещаются горизонтально и газовая струя не разрушает покрытия аэродрома.

Но схема шасси с передним колесом не лишена недостатков: сло­жность передвижения по мягкому и вязкому грунту, так как зары­вается» переднее колесо, большая опасность при посадке с пов­режденной передней опорой, большая масса конструкции, труд­ность обеспечения значительного объема в передней части фюзе­ляжа для уборки колеса.

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШАССИ

Для обеспечения необходимой устойчивости и маневренности самолета во время движения его по взлетно-посадочной полосе (ВПП) опорные точки шасси должны быть размещены на опреде­ленном расстоянии друг от друга и от центра тяжести самолета.

Основные величины, характеризующие расположение опорных то­чек самолетов, следующие: колея, база, высота шасси, угол сто­янки н угол выноса основных колес относительно вертикали само­лета (рис. 8.2).

Колея шасси b, т. е. расстояние между центрами площадей кон­тактов основных колес с землей определяет поперечную устойчи­вость самолета и легкость маневрирования его по земле. Чем ши­ре колея, тем меньше возможность опрокидывания самоле­та на крыло и тем лучше управление самолета на земле с помощью тормозов. Однако устойчивость пути при этом ухудшается, так как самолет становится более чувствительным ко всяким неровностям аэродрома. При недостаточно широкой колее самолет при взлете и посадке с креном может коснуться концом крыла земли. У сов­ременных самолетов колея шасси обычно составляет 0,15—0,35 размаха крыла, а колея самолетов с небольшим удлинением крыла (λ<4,5) —0,5 размаха.

Высота шасси самолета Н — расстояние от земли до центра тяжести самолета. Для самолетов с поршневыми и турбо­винтовыми двигателями высота шасси выбирается из условия, что при горизонтальном положении базовой линии самолета расстоя­ние от концов лопастей воздушных винтов при полном обжатии пневматиков колес и амортизационных стоек до поверхности аэрод­рома должно быть не менее 50 см.

У самолетов с газотурбинными двигателями высота шасси при­нимается минимальной, при условии выдерживания угла φ в пре­делах, обеспечивающих посадочный угол атаки крыла αпос. Угол φ- называют углом опрокидывания. Для самолета с передним колесом Ф — это угол между плоскостью, касательной к основным колесам шасси и хвостовой опоре, и землей при стоянке самолета

где: αПос —угол атаки при су пос;

α'кр — угол установки крыла, т. е. угол между корневой хордой крыла и ба­зовой линией фюзеляжа;

φ 1 — стояночный угол самолета.

База шасси В — расстояние между центрами колес основных и передних (хвостовых) опор. Для шасси с передней опорой выгод­нее базу делать возможно большей, так как при этом уменьшает-

Рис. 8.2. Основные параметры шасси самолета

ся опасность опрокидывания самолета через нос. База определяет нагрузку на переднюю или хвостовую опору, и чем больше база, тем нагрузка на вспомогательную опору меньше. База шасси сов­ременных самолетов составляет 20—40% длины фюзеляжа. База шасси с хвостовой опорой особого значения не имеет, она выби­рается из условий получения необходимого угла стоянки, а также малой нагрузки на хвостовую опору.

Стояночный угол самолета φi—угол между продо­льной осью самолета и горизонтом. Для шасси с передней опорой он составляет 0—4°, a для шасси с хвостовой опорой φ1 = αПОС—α'Кр. Для шасси с передним колесом большое значение имеет угол выноса шасси назад у — угол между вертикалью и плоско­стью, проходящей через центр тяжести самолета и точки касания основных колес шасси с землей при стоянке самолета и необжатых амортизаторах. Этот угол должен быть минимальным для умень­шения нагрузки на переднюю опору, но в то же время достаточным для предохранения от опрокидывания самолета на хвост при лю­бой посадке. Поэтому угол γ=φ+(1—2)°, где: φ— угол опрокиды­вания.