
- •Содержание
- •Введение
- •Рабочая учебная программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Структура и объем дисциплины
- •1.3. Содержание дисциплины Распределение фонда времени по темам и видам занятий
- •1.4. Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
- •Перечень вопросов для подготовки к экзамену по дисциплине «Информатика»
- •1 Семестр
- •2 Семестр
- •1.5. Содержание индивидуальной работы студента (под руководством преподавателя)
- •2. Учебно-методическое пособие
- •2.1. Конспект лекций
- •Тема 1. Понятие информации. Общая характеристика процессов создания, сбора, передачи, обработки, накопления и хранения информации средствами вычислительной техники.
- •1.1. Сообщения, данные, сигнал, атрибутивные свойства информации, показатели качества информации, формы представления информации. Системы передачи информации.
- •1.2 Меры и единицы представления, измерения и хранения информации
- •Синтаксическая мера информации
- •Семантическая мера информации
- •Прагматическая мера информации
- •Единицы измерения информации.
- •1.3 Системы счисления
- •Формы представления чисел
- •Двоичная система счисления
- •Правила выполнения простейших арифметических действий.
- •1.4. Основные понятия алгебры логики. Логические основы эвм.
- •Тема 2. Технические средства реализации информационных процессов
- •2.1. История развития эвм. Понятие и основные виды архитектуры эвм
- •2.2. Состав и назначение основных элементов персонального компьютера. Центральный процессор. Системные шины и слоты расширения
- •2.3. Запоминающие устройства: классификация, принцип работы, основные характеристики
- •2.4. Устройства ввода/вывода данных, их разновидности и основные характеристики
- •Тема 3. Программные средства реализации информационных процессов. Создание текстовых документов и электронных таблиц
- •3.1. Классификация программного обеспечения. Виды программного обеспечения и их характеристики.
- •3.2. Системное программное обеспечение.
- •3.3. Прикладное программное обеспечение. Его классификация и область применения.
- •4.2. Информационная модель объекта
- •Тема 5. Алгоритмизация и программирование. Языки программирования высокого уровня. Программное обеспечение и технологии программирования
- •5.1. Алгоритм и его свойства. Структура алгоритма.
- •5.2. Эволюция и классификация языков программирования
- •5.3 Трансляция, компиляция и интерпретация
- •Тема 6. Базы данных.
- •6.1. Основные понятия о базах данных.
- •Виды моделей данных
- •Классификация баз данных
- •Реляционные базы данных
- •Основные понятия реляционных баз данных
- •Основные операции с данными в субд.
- •6.2. Назначение и основы использования систем искусственного интеллекта. Базы знаний. Экспертные системы.
- •Классификация экспертных систем по решаемой задаче
- •Базовые сетевые топологии
- •7.1. Глобальные сети эвм.
- •История
- •Адресация в Интернете
- •7.3. Защита информации в локальных и глобальных компьютерных сетях. Электронная подпись.
- •Вредоносные программы
- •Методы преобразования информации
- •2.2. Содержание практических занятий
- •Блок-схема алгоритма»
- •Блок-схема алгоритма»
- •2.3. Лабораторный практикум по дисциплине
- •Содержание лабораторных занятий лабораторная работа №1. « кодирование информации»
- •Кодирование символьной информации
- •Кодирование графических изображений
- •Лабораторная работа №2. «информация и энтропия»
- •Лабораторная работа №3. «позиционные системы счисления»
- •Краткие теоретические сведения:
- •Формы представления чисел
- •Двоичная система счисления
- •Восьмеричная и шестнадцатеричная системы счисления
- •Взаимное преобразование двоичных, восьмеричных и шестнадцатеричных чисел
- •Двоично-десятичная система счисления
- •Лабораторная работа №4. «Логические основы функционированиЯ эвм»
- •Логические элементы
- •Лабораторная работа №5. «основные приемы работы в microsoft word»
- •Интересное предложение
- •Образец формул
- •Лабораторная работа №6. «Технология создания электронных таблиц в ms Excel»
- •Функции ms Excel
- •Счётесли
- •Задания для выполнения:
- •Лабораторная работа №7. «Основы работы с MathCad»
- •Лабораторная работа №8. «проектирование алгоритмов. Блок-схема алгоритма»
- •Лабораторная работа 9. «Знакомство с редактором Turbo Pascal»
- •Структура программы.
- •Задание 4. Вычислить значение функции
- •Лабораторная работа 9. «Операторы циклов»
- •Лабораторная работа №11. «основы обработки реляционных баз данных средствами
- •1. 2. Задания для самостоятельной работы
- •Лабораторная работа №12. «Основы работы с языком html»
- •Лабораторная работа №13. «информационная безопасность. Основы криптографии»
- •Тулыио целзио тсдизло
- •Современные алгоритмы шифрования
- •Требования к оформлению и защите лабораторных работ
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.2 Методические рекомендации для преподавателя
- •3.3. Методические указания студентам по изучению дисциплины
- •3.4. Методические указания и задания для выполнения курсовой работы
- •Варианты заданий для выполнения курсовой работы
- •3.5.Методические указания и темы для выполнения контрольных работ
- •3.6. Материально-техническое и программное обеспечение дисциплины
- •3.7. Программное обеспечение использования современных информационно-коммуникативных технологий
- •Поволжский государственный университет сервиса
- •Поволжский государственный университет сервиса
- •Приложение 1
- •Integer - целые из интервала [ -32768; 32767 ];
- •С т а н д а р т н ы е математические ф у н к ц и и
- •Формулы возведения в степень
- •Запись математических выражений
Тема 5. Алгоритмизация и программирование. Языки программирования высокого уровня. Программное обеспечение и технологии программирования
5.1. Алгоритм и его свойства. Структура алгоритма.
Алгоритм — точное и понятное предписание исполнителю совеpшить последовательность действий, направленных на решение поставленной задачи.
Алгоритм – система точно сформулированных правил, определяющая процесс преобразования допустимых исходных данных (входной информации) в желаемый результат (выходную информацию) за конечное число шагов.
Название "алгоритм" произошло от латинской формы имени среднеазиатского математика аль-Хорезми — Algorithmi. Алгоритм — одно из основных понятий информатики и математики.
Основные свойства алгоритмов следующие:
Понятность для исполнителя — т.е. исполнитель алгоритма должен знать, как его выполнять.
Дискретность (прерывность, раздельность) — т.е. алгоpитм должен пpедставлять процесс решения задачи как последовательное выполнение простых (или pанее опpеделенных) шагов (этапов).
Определенность — т.е. каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоритма носит механический хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.
Результативность (или конечность). Это свойство состоит в том, что алгоpитм должен приводить к решению задачи за конечное число шагов.
Массовость. Это означает, что алгоритм решения задачи разрабатывается в общем виде, т.е. он должен быть применим для некоторого класса задач, различающихся лишь исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.
Формы представления алгоритмов.
словесная (записи на естественном языке);
графическая (изображения из графических символов);
псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);
программная (тексты на языках программирования).
Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке. Например. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.
Алгоритм может быть следующим:
задать два числа;
если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;
определить большее из чисел;
заменить большее из чисел разностью большего и меньшего из чисел;
повторить алгоритм с шага 2.
Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи.
Словесный способ не имеет широкого распространения по следующим причинам:
• такие описания строго не формализуемы;
• страдают многословностью записей;
• допускают неоднозначность толкования отдельных предписаний.
Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.
Такое графическое представление называется схемой алгоритма или блок-схемой.
При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.
Описание алгоритма с помощью блок схем осуществляется рисованием последовательности геометрических фигур, каждая из которых подразумевает выполнение определенного действия алгоритма. Порядок выполнения действий указывается стрелками. Написание алгоритмов с помощью блок-схем регламентируется ГОСТом.
В зависимости от последовательности выполнения действий в алгоритме выделяют алгоритмы линейной, разветвленной и циклической структуры.
В алгоритмах линейной структуры действия выполняются последовательно одно за другим:
В алгоритмах разветвленной структуры в зависимости от выполнения или невыполнения какого-либо условия производятся различные последовательности действий. Каждая такая последовательность действий называется ветвью алгоритма.
В алгоритмах циклической структуры в зависимости от выполнения или невыполнения какого-либо условия выполняется повторяющаяся последовательность действий, называющаяся телом цикла. Вложенным называется цикл, находящийся внутри тела другого цикла. Различают циклы с предусловием и послеусловием:
Итерационным называется цикл, число повторений которого не задается, а определяется в ходе выполнения цикла. В этом случае одно повторение цикла называется итерацией.
Цикл — разновидность управляющей конструкции в высокоуровневых языках программирования, предназначенная для организации многократного исполнения набора инструкций. Также циклом может называться любая многократно исполняемая последовательность инструкций, организованная любым способом (например, с помощью условного перехода).
Безусловные циклы:
Иногда в программах используются циклы, выход из которых не предусмотрен логикой программы. Такие циклы называются безусловными, или бесконечными. Специальных синтаксических средств для создания бесконечных циклов, ввиду их нетипичности, языки программирования не предусматривают, поэтому такие циклы создаются с помощью конструкций, предназначенных для создания обычных (или условных) циклов. Для обеспечения бесконечного повторения проверка условия в таком цикле либо отсутствует, либо заменяется константным значением.
Цикл с предусловием:
Цикл с предусловием — цикл, который выполняется пока истинно некоторое условие, указанное перед его началом. Это условие проверяется до выполнения тела цикла, поэтому тело может быть не выполнено ни разу (если условие с самого начала ложно). В большинстве процедурных языков программирования реализуется оператором while, отсюда его второе название — while-цикл. На языке Pascal цикл с предусловием имеет следующий вид:
while <условие>
do
begin
<тело
цикла>
end;
Цикл с постусловием:
Цикл с постусловием — цикл, в котором условие проверяется после выполнения тела цикла. Отсюда следует, что тело всегда выполняется хотя бы один раз. В языке Паскаль этот цикл реализует оператор repeat..until; в Си — do…while.
На языке Pascal цикл с постусловием имеет следующий вид::
repeat <тело
цикла> until
<условие>
Оператор ветвления (условная инструкция, условный оператор) — оператор, конструкция языка программирования, обеспечивающая выполнение определённой команды (набора команд) только при условии истинности некоторого логического выражения, либо выполнение одной из нескольких команд (наборов команд) в зависимости от значения некоторого выражения.
Существует две основные формы условной инструкции, встречающиеся в реальных языках программирования: условный оператор (оператор if) и оператор многозначного выбора (переключатель, case, switch)
Условный оператор:
Условный оператор реализует выполнение определённых команд при условии, что некоторое логическое выражение (условие) принимает значение «истина» true. В большинстве языков программирования условный оператор начинается с ключевого слова if.
Встречаются следующие формы условного оператора:
Условный оператор с одной ветвью
if условие then команды end
При выполнении такого оператора вычисляется условие, и если оно истинно, то выполняются команды до ключевого слова end, в противном случае выполнение программы продолжается со следующей за условным оператором команды. В языках низкого уровня (ассемблерах) это — единственная доступная форма условного оператора. В некоторых языках для условного оператора с одной ветвью используется специальное ключевое слово (обычно это when).
Условный оператор с двумя ветвями
if условие then команды1 else команды2 end
Здесь при истинности условия выполняются команды1 при ложности — команды2. При необходимости проверить последовательно несколько условий возможно каскадирование условных операторов:
if условие1
then
команды1
else if
условие2 then команды2 else
if условие3 then команды3 ...
else if условиеN-1
then командыN-1
else командыN end;
В этом случае условия будут проверяться последовательно, и как только встретится истинное, будет выполнен соответствующий набор команд и исполнение перейдёт к команде, следующей за условным оператором. Если ни одно из условий не окажется истинным, выполняются командыN из ветви else.
Условный оператор с несколькими условиями
Вышеприведённая схема каскада условных операторов используется достаточно часто, поэтому ряд языков программирования содержит специальную конструкцию для неё, позволяющую записать множественное ветвление несколько компактнее и менее подверженную ошибкам написания:
if условие1 then команды1 elsif
условие2 then команды2 elsif
условие3 then команды3 ... else
командыN end;
порядок выполнения этого оператора в точности соответствует вышеприведённому каскаду простых операторов if-then-else, а отличие чисто формальное: вместо вложенных нескольких условных операторов эта конструкция является единым целым и содержит дополнительное ключевое слово elsif, требующее после себя очередное условие.