Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект ПТЭ Техническая термодинамика ч.1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.26 Mб
Скачать

7.1.2. Массовый расход. Уравнение неразрывности

Важной характеристикой течения газа (пара) является массовый расход , т.е. масса вещества, протекающего через поверхность площадью f в единицу времени. При течении газа в каналах в одномерном приближении массовый расход определится следующим образом:

Здесь ρ=1/v - плотность газа (пара), кг/м3; vудельный объем, м3/кг.

Логарифмическое дифференцирование позволяет записать уравнение для расхода в виде

Если стенки канала непроницаемы для вещества, то, на основании закона сохранения массы, в стационарном режиме массовый расход газа (пара) через любое сечение канала будет постоянной величиной, т.е. = const. Тогда

Это соотношение называют уравнением неразрывности или сплошности.

Лекция 14

7.2. Сопло и диффузор

Запишем I закон термодинамики при принятых выше допущениях с точки зрения неподвижного наблюдателя и с точки зрения наблюдателя, жестко связанного с системой:

Поскольку оба эти выражения описывают одну и ту же систему, из их сравнения находим

На основании этого выражения можно ввести два определения

сопло – канал, предназначенный для ускорения потока (dw>0) за счет уменьшения давления (dp<0);

диффузор – канал, предназначенный для увеличения давления (dp>0) за счет торможения потока (dw<0).

7.3. Скорость истечения и расход в адиабатически изолированных каналах без трения

Первый закон термодинамики легко интегрируется, так как входящие в него дифференциалы являются полными:

причем этот результат справедлив как для обратимого течения, так и для необратимого. Обычно определяют скорость w2 потока в выходном сечении канала:

Обычно скорость на выходе сопла w2 значительно превышает скорость на входе w1, тогда

Разность энтальпий при течении в адиабатических соплах равна полезной внешней работе потока, откуда

В случае идеального газа на основании выражения для полезной внешней работы адиабатического процесса получаем

Массовый расход газа при известной скорости в выходном сечении находится на основании определения

где удельный объем в выходном сечении находится из условия адиабатичности процесса, т.е.

С учетом этого выражение для массового расхода идеального газа принимает вид

.

Построим графики зависимости скорости истечения газа из сопла w2 и массового расхода газа от отношения давлений за соплом p2 и перед соплом p1, для чего введем обозначение

причем β может изменяться в пределах от 0 до 1, так как давление газа p2 на выходе для сопел по определению меньше давления на входе p1 и оба они положительны.

Для упрощения графического представления введем также безразмерные скорость истечения и массовый расход с помощью равенств

.

Тогда для безразмерных скорости истечения и расхода получаем следующие выражения:

.

Графики этих функций показаны на рис.7.2.

Формулы для скорости и расхода справедливы в интервале значений отношения давлений β от некоторого критического βкр до единицы, причем при массовый расход принимает максимальное значение. В интервале же массовый расход не зависит от отношения давлений β и оказывается равным , в то время как теория дает ниспадающую до нуля ветвь. Скорость потока в этом же интервале β может вести себя двояким образом: либо возрастать с уменьшением отношения давлений, либо оставаться постоянной и равной скорости при критическом отношении давлений βкр. Вычислим βкр из условия максимума массового расхода:

Приравнивая числитель нулю при β= βкр, получаем

Таким образом, критическое отношение давлений при адиабатном течении идеального газа в соплах зависит только от его показателя адиабаты, т.е. от числа атомов в молекулах газа. Значения βкр представим в таблице. Здесь же приведено ориентировочное значение критического отношения давлений для водяного пара вблизи верхней пограничной кривой, которое может быть использовано для практических расчетов.

Таблица 3

Критическое отношение давлений

Количество атомов в молекуле газа

1

2

3

Число степеней

свободы f

3

5

6

Показатель адиабаты k

1.67

1.40

1.33

Критическое

отношение

давлений βкр

0.487

0.528

0.540

Критическому отношению давлений βкр в соответствует скорость истечения из адиабатического сопла:

Для адиабатного процесса

Тогда скорость истечения газа при βкр равна

а это не что иное, как скорость звука в газах, т.е. скорость распространения малых возмущений давления, плотности и т.д. Таким образом, аномалия в поведении скорости потока в адиабатическом сопле связана с переходом от дозвукового режима течения к сверхзвуковому.

Лекция 15