
- •Лабораторная работа№ 1 абсолютная и относительная погрешности
- •Контрольные вопросы
- •Лабораторная работа № 2 решение систем линейных алгебраических уравнений
- •1.Ме́тод Га́усса
- •2.Метод Гаусса — Жордана
- •3.Метод Крамера
- •4.Матричный метод
- •5. Метод прогонки
- •Содержание отчёта.
- •Приложение
- •Список литературы
2.Метод Гаусса — Жордана
Метод Гаусса — Жордана (метод полного исключения неизвестных) используется для решения квадратных систем линейных алгебраических уравнений, нахождения обратной матрицы, нахождения координат вектора в заданном базисе, отыскания ранга матрицы. Метод является модификацией метода Гаусса. Назван в честь К. Ф. Гаусса и немецкого геодезиста и математика Вильгельма Йордана.
Алгоритм
Выбирают первую колонку слева, в которой есть хоть одно отличное от нуля значение.
Если самое верхнее число в этой колонке есть ноль, то меняют всю первую строку матрицы с другой строкой матрицы, где в этой колонке нет нуля.
Все элементы первой строки делят на верхний элемент выбранной колонки.
Из оставшихся строк вычитают первую строку, умноженную на первый элемент соответствующей строки, с целью получить первым элементом каждой строки (кроме первой) ноль.
Далее проводят такую же процедуру с матрицей, получающейся из исходной матрицы после вычёркивания первой строки и первого столбца.
После повторения этой процедуры n − 1 раз получают верхнюю треугольную матрицу
Вычитаем из предпоследней строки последнюю строку, умноженную на соответствующий коэффициент, с тем, чтобы в предпоследней строке осталась только 1 на главной диагонали.
Повторяют предыдущий шаг для последующих строк. В итоге получают единичную матрицу и решение на месте свободного вектора (с ним необходимо проводить все те же преобразования).
Чтобы получить обратную матрицу, нужно применить все операции в том же порядке к единичной матрице.
Пример
Для решения следующей системы уравнений:
запишем её в виде матрицы 3×4, где последний столбец является свободным членом:
Проведём следующие действия:
К строке 2 добавим: −4 × Строку 1.
К строке 3 добавим: −9 × Строку 1.
Получим:
К строке 3 добавим: −3 × Строку 2.
Строку 2 делим на −2
К строке 1 добавим: −1 × Строку 3.
К строке 2 добавим: −3/2 × Строку 3.
К строке 1 добавим: −1 × Строку 2.
В правом столбце получаем решение:
3.Метод Крамера
Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Создан Габриэлем Крамером в 1751 году.
Для системы n линейных уравнений с n неизвестными (над произвольным полем)
с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде
(i-ый столбец матрицы системы заменяется столбцом свободных членов). В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:
В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.
Пример
Система линейных уравнений:
Определители:
Решение:
Пример:
Определители:
Из-за
высокой вычислительной сложности метода
— требуется вычисление n
+ 1 определителя
размерности
,
он не применяется для машинного решения
больших СЛАУ.
Время, необходимое на вычисление одного
определителя примерно такое же, как и
время на решение одной системы уравнений
при использовании метода
Гаусса.
Однако он иногда используется при ручном
счёте и в теоретических выкладках.