Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_kurs_dnevn_IDZ-algebra_geometr_13g.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.29 Mб
Скачать

Методические указания к выполнению индивидуальных домашних заданий Матрицы и их приложения

Матрицей размера называется прямоугольная таблица чисел

,

имеющая строк (одинаковой длины) и (одинаковой длины) столбцов.

Элементы матрицы снабжаются двумя индексами, первый из которых обозначает номер строки, второй - номер столбца, на пересечении которых стоит элемент . Если матрица имеет строк и столбцов, то матрицу называют квадратной.

Матрицы одинакового размера можно складывать. При этом суммой матриц и называют матрицу , для которой .

Например,

.

Произведением матрицы на число называют матрицу , каждый элемент которой . Например,

.

Задача. Даны матрицы и :

; .

Найти матрицы: a) , б) .

Решение. а) ; ;

;

б) ; ;

;

Произведением матрицы размером на матрицу размером называют матрицу C размером , каждый элемент которой

, где ; .

То есть элемент – ой строки и – го столбца матрицы произведения равен сумме произведений элементов – ой строки матрицы на соответствующие элементы – го столбца матрицы .

Если определено произведение ,то это не значит, что определено произведение . Это произведение может не иметь смысла. Если выполняется , то матрицы называются перестановочными, или коммутирующими. Отметим сразу же, что обычно .

Задача. Даны матрицы и :

; .

Найти матрицу .

Решение.

.

.

Обратные матрицы

Квадратная матрица называется обратимой, если существует матрица такая, что . Эту матрицу называют обратной к матрице и обозначают .

Каждой квадратной матрице соответствует определитель . Оказывается, что если , то . Так как , то .

Необходимым и достаточным условием существования обратной матрицы является условие .

Алгебраическим дополнением элемента называется произведение числа на определитель, получающийся при вычеркиванием -ой строки и -го столбца. Например, определитель

имеет следующие алгебраические дополнения:

; ; ; .

Если определитель матрицы отличен от нуля , то обратную матрицу строят следующим образом:

1) находят все алгебраические дополнения;

2) составляют матрицу алгебраических дополнений ;

3) транспонируют матрицу B и умножают на число .

Полученная матрица и будет обратной матрицей.

Задача. Решить матричным способом систему уравнений

Решение. Положим, что

; ; .

Тогда матричная запись рассматриваемой системы уравнений будет иметь вид

. (10)

Найдем определитель матрицы :

.

Так как , то существует обратная матрица . Умножая слева на матрицу равенство (10), получим, что или . Найдем обратную матрицу :

; ; ;

; ; ;

; ; .

Обратная матрица .

Но тогда .

Ответ:

Элементы векторной алгебры Векторы и линейные операции над ними

В геометрии вектором называют направленный отрезок с начальной А и конечной В точками, который можно перемещать параллельно самому себе. Таким образом, считается, что два направленных отрезка и , имеющие равные длины и одно и то же направление, определяют (изображают) один и тот же вектор , и пишут .

Длиной (или модулем) вектора называется число, равное длине отрезка АВ, изображающего вектор.

Векторы, параллельные одной прямой, называются коллинеарными и компланарными, если они параллельны одной плоскости.

Если вектор изображается направленным отрезком , то вектор, изображаемый направленным отрезком , называется вектором, противоположным вектору и обозначается - .

Для векторов вводятся операции сложения и вычитания. При этом заметим, что знаки «+» и «», которые ставятся между векторами, имеют другой смысл, чем в алгебре: они обозначают не алгебраическое, а геометрическое сложение векторов по правилу треугольника или параллелограмма.

Произведением вектора на число называется вектор , имеющий длину , направление которого совпадает с направлением вектора , если , и противоположно ему, если .

Сложение векторов и умножение их на число называются линейными операциями над векторами. Эти операции обладают свойствами по форме аналогичными свойствам сложения и умножения чисел.

Если в прямоугольной системе координат точкиА и В имеют координаты и , то координаты вектора находятся как разности соответствующих координат конца В и начала А этого вектора, т.е.

,

а модуль его определяется как расстояние между двумя точками:

.

Линейные операции над векторами, заданными своими координатами и , выполняются по следующим правилам:

1) при сложении двух векторов их одноименные координаты складываются: ;

2) при умножении вектора на число все его координаты умножаются на это число: .

Два вектора равны, если равны их соответствующие координаты, т.е. .

Два вектора коллинеарные, если их координаты пропорциональны.

Итак, если  , то или .