
- •210601.65 «Нанотехнология в электронике»
- •Лекция №1 фундаментальные явления. Полупроводниковые структуры и их классификация План лекции
- •1.1. Фундаментальные явления.
- •1.2. Гетеропереходы первого и второго типов.
- •1.3. Энергетическая диаграмма структуры с одиночной квантовой ямой. Энергетическая диаграмма одномерной сверхрешётки
- •Лекция №3 особенности энергетического спектра частиц в системах пониженой размерности План лекции
- •1.1. Потенциальный барьер конечной ширины.
- •1.2. Интерференционные эффекты при надбарьерном пролете частиц.
- •Лекция №4 особенности энергетического спектра частиц в системах пониженой размерности План лекции
- •1.1. Частица в прямоугольной потенциальной яме.
- •Лекция №5 особенности энергетического спектра частиц в системах пониженой размерности План лекции
- •1.1. Особенности движения частиц над потенциальной ямой.
- •1.2. Движение частицы в сферически симметричной прямоугольной потенциальной яме.
- •1.3. Энергетические состояния в прямоугольной квантовой яме с бесконечными стенками и дополнительным провалом.
- •Лекция №6 особенности энергетического спектра частиц в системах пониженой размерности План лекции
- •1.1. Энергетическая диаграмма квантовой ямы с конечными стенками и дополнительным провалом.
- •1.2. Структура со сдвоенной квантовой ямой. Энергетический спектр частицы в системе с δ-образным барьером.
- •Лекция №7 особенности энергетического спектра частиц в системах пониженой размерности План лекции
- •1.1. Прохождение частицы через многобарьерные квантовые структуры.
- •Лекция №8 процессы переноса в наноструктурах в электрических полях План лекции
- •1.1. Продольный перенос в наноструктурах в электрическом поле.
- •1. Электрон-фононное рассеяние.
- •2. Рассеяние на примесных атомах.
- •3. Рассеяние на шероховатостях границы раздела.
- •4. Межподзонное рассеяние.
- •Лекция №9 процессы переноса в наноструктурах в электрических полях План лекции
- •1.1. Поперечный перенос в наноструктурах в электрическом поле.
2. Рассеяние на примесных атомах.
При низких температурах в полупроводниках с пониженной размерностью основной вклад в процессы рассеяния (как и в объемных системах) возникает из-за рассеяния на ионизированных или нейтральных примесных атомах. Основное различие между процессами рассеяния в дву- и трехмерных системах возникает из-за наличия продольного переноса, при котором рассеивающие атомы примеси часто пространственно разделены с двумерной плоскостью, в которой движутся электроны. В модулированно-легированных полупроводниках (рис. 5.4, 5.6) заряженные доноры располагаются в барьере АlGаАs, а движение самих электронов происходит в яме GаАs, параллельно поверхности раздела полупроводников. Аналогично в МОП-структуре (рис. 5.1) электроны двигаются внутри инверсного канала, отделенного от атомов примеси, расположенных в тонком слое подзатворного окисла.
Для расчета рассеяния на атомах примесей в квантовой гетероструктуре полевого МОП-транзистора необходимо использовать некоторые упрощающие предположения, например, использовать представление о так называемом -легировании, при котором предполагается, что все ионизированные примесные атомы лежат в двумерной области (плоскости) на расстоянии d от электронного канала, а энергия всех электронов, участвующих в процессах рассеяния, близка к значению уровня Ферми. Далее следует предположить, что концентрация примесных атомов не очень велика, т. е. все заряженные примеси взаимодействуют с носителями независимо друг от друга. Исходя из этих предположений, можно легко показать, что подвижность носителей возрастает как ~d3. С другой стороны, при очень больших значениях d концентрация электронов в канале должна стремительно уменьшаться из-за уменьшения напряженности электрического поля, что приводит к уменьшению крутизны полевого МОП-транзистора. Поэтому для каждой такой структуры должно существовать некое оптимальное значение d.
3. Рассеяние на шероховатостях границы раздела.
На теоретической, абсолютно гладкой границе раздела процессы рассеяния электронов должны быть только упругими, однако реальные поверхности всегда имеют несовершенства на атомарном уровне, вследствие чего отражения носителей перестают быть «зеркальными», а потеря импульса приводит к различным релаксационным явлениям. Собственно говоря различные процессы рассеяния на поверхностях раздела изучались физиками уже долгие годы, так как они играют важную роль при продольном переносе носителей заряда в тонких пленках. Однако современное, основанное на квантовой механике описание этих явлений, применительно к системам с пониженной размерностью, стало развиваться относительно недавно.
Значение таких процессов часто зависит и от конкретного вида системы. Например, они играют не столь значительную роль в модулированно-легированных гетероструктурах, с высокосовершенными границами раздела, полученными с использованием таких методов роста, как молекулярно-лучевая эпитаксия. В этом случае поверхности получаются практически плоские, с небольшим числом моноатомных ступенек. С другой стороны, рассеяние на поверхностях раздела значительно возрастает в МОП-структурах, где слой оксида выращивается термически, вследствие чего его поверхность является не такой идеальной. Кроме этого, относительный вклад рассеяния на границах раздела зависит от ширины квантовых ям, так как по мере уменьшения их ширины волновые функции электронов глубже проникают в потенциальный барьер на границе оксид — полупроводник, т. е. электроны становятся более «чувствительными» к шероховатости поверхности и вероятность соответствующего рассеяния возрастает. Это обстоятельство объясняет, кстати, некоторое снижение подвижности при увеличении напряжения на затворе. В любом случае рассеяние на неоднородностях поверхности, как и рассеяние на примесях, заметно проявляется лишь при низких температурах, когда фононным рассеянием можно пренебрегать. Наконец, следует отметить, что для узких квантовых проволок вклад рассеяния на поверхностях раздела почти на порядок превосходит вклад аналогичных процессов в двумерных системах. Это особенно заметно и важно в тех случаях, когда проволоки изготовляются с использованием литографии, так как при этом именно шероховатость границ проволоки становится фактором, определяющим подвижность электронов даже при комнатных температурах.