Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
03 - Курс лекций по дисциплине фукдамент.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.37 Mб
Скачать

Лекция №8 процессы переноса в наноструктурах в электрических полях План лекции

1.1. Продольный перенос в наноструктурах в электрическом поле.

1.1. Продольный перенос в наноструктурах в электрическом поле.

Электронный перенос в двумерных квантовых гетероструктурах, направленный параллельно потенциальным барьерам на поверх­ности раздела, может рассматриваться в рамках полуклассического подхода, подобно тому, который используется для описания объ­емных объектов. Разумеется, мы должны учесть дополнительные механизмы рассеяния электронов (например, рассеяние на «ше­роховатостях» поверхности раздела), а также особенности низко­размерных систем, изучение продольного переноса в нанострук­турах началось с измерений электронной проводимости вдоль канала полевых МОП-структур. Эти исследования завершились большим успехом, и по их результатам в 70-х годах было начато промышленное производство полевых МОП-транзисторов, осно­ву которых составляют модулированно-легированные квантовые гетероструктуры. Электроны в таких структурах двигаются в об­ласти, свободной от заряженных атомов примесей, вследствие чего их подвижность значительно повышается.

Механизмы рассеяния электронов

Основные механизмы рассеяния электронов при продольном пере­носе в полупроводниковых наноструктурах связаны, как и в объ­емных образцах, с фононами и атомами примесей (заряженными или нейтральными). Кроме того, возникают и дополнительные механизмы, специфические именно для наноструктур (например, упомянутое выше рассеяние на «шероховатостях» поверхности раздела). Ниже все эти механизмы рассматриваются отдельно.

1. Электрон-фононное рассеяние.

Расчеты механизмов электрон-фононного рассеяния в низ­коразмерных полупроводниковых структурах показывают, что они во многом схожи с процессами в объемных полупроводни­ках, например, такое рассеяние является преобладающим при температурах выше 50 K и т.п. Однако существует и значи­тельное различие по сравнению с трехмерными структурами, обусловленное тем, что при очень малой ширине квантовых ям а возрастает роль акустических фононов. Это различие обуслов­лено отсутствием инвариантности при движении в перпендику­лярном направлении, например, для двумерных квантовых ям, где неопределенность в перпендикулярной компоненте момента должно быть h/а. Поэтому значение момента акустических фо­нонов в очень узких квантовых ямах не сохраняется, в отличие от объемных систем, где они обладают хорошо определенным импульсом. Возрастание неопределенности в значении импуль­са приводит к увеличению числа разнообразных механизмов электрон-фононного рассеяния, а затем и к возрастанию роли таких процессов в низкоразмерных полупроводниках.

Процессы рассеяния на оптических фононах в низкоразмер­ных структурах также существенно отличаются от аналогичных процессов в трехмерных полупроводниках, особенно в случае сильно полярных материалов типа соединения AIIIВV. Взаимо­действие проявляется с особой силой в квантовых ямах, где нет перекрытия энергетических зон оптических фононов полупроводниковой ямы (например, GаАs) и полупроводнико­вого барьера (например, АlGaAs). В таких системах вклад в фононное рассеяние локальных оптических мод и мод, связанных с поверхностями раздела, становится гораздо более существен­ным, чем вклад от обычных объемных оптических фононов.