
- •1.Первообразная и неопределенный интеграл, их свойства.
- •2.Табличные интегралы. Метод внесения под знак дифференциала
- •3. Замена переменной. Интегралы от иррациональных функций
- •Интегралы от иррациональных функций
- •4. Метод интегрирования по частям
- •5. Интегрирование рациональных дробей
- •6. Интегрирование тригонометрических функций
- •7. Определенный интеграл, его геометрический смысл и свойства
- •8. Формула Ньютона-Лейбница. Интегрирование по частям и замена
- •9. Несобственные интегралы, их сходимость, признаки сравнения
- •Если интегралы ограничены в совокупности, откуда и следует сходимость интеграла
- •10. Вычисление площади плоской фигуры: в декартовой, полярной системах координат; для функций, заданных параметрически
- •11. Вычисление длины дуги плоской кривой
- •13. Функция многих переменных. Область определения. График, линии и поверхности уровня
- •14. Непрерывность функции двух переменных. Частные производные. Производные высших порядков
- •Частные производные
- •15. Дифференциал функции нескольких переменных и его применение в приближенных вычислениях и для оценки погрешностей Применение дифференциала к приближенным вычислениям
- •16. Уравнение касательной плоскости и нормали к поверхности
- •17. Экстремум функции двух переменных. Необходимое и достаточное условия экстремума. Нахождение наибольшего и наименьшего значений функции в замкнутой области.
- •18. Производная сложной функции. Дифференцирование неявной функции Производная сложной функции.
- •Дифференцирование неявных функций
- •19. Производная по направлению. Градиент
- •20. Двойной интеграл, его геометрический смысл и свойства
- •21. Вычисление двойного интеграла в декартовой системе координат
- •22. Вычисление двойного интеграла в полярной системе координат
- •23. Вычисление площадей и объемов с помощью двойного интеграла
- •24. Приложение двойного интеграла в механике
- •25. Криволинейный интеграл 1-го рода, его свойства и вычисление
- •26. Масса, моменты, центр тяжести плоской кривой
- •27. Криволинейный интеграл 2-го рода, его физический смысл, свойства, вычисление и приложения
- •28. Формула Грина
- •29. Условие независимости криволинейного интеграла 2-го рода от пути интегрирования. Восстановление функции по полному дифференциалу
- •30. Числовые ряды. Сумма и сходимость числового ряда. Свойства сходящихся рядов. Ряд геометрической прогрессии
- •31. Необходимый признак сходимости числового ряда. Гармонический ряд
- •32. Признаки сравнения для рядов с положительными членами. Табличные ряды
- •37. Функциональные ряды, их область сходимости
- •38. Степенные ряды. Радиус и область сходимости степенного ряда
- •39. Ряды Тейлора и Маклорена. Нахождение коэффициентов ряда Маклорена
- •40. Разложение в ряд Маклорена функций
- •41. Применение рядов Маклорена для вычисления значений функций
- •42. Взятие неопределенных интегралов и вычисление определенных интегралов с помощью степенных рядов
15. Дифференциал функции нескольких переменных и его применение в приближенных вычислениях и для оценки погрешностей Применение дифференциала к приближенным вычислениям
Понятие дифференциала
подсказывает, что если какой-Либо
процесс по характеру своего изменения
близок к линейному, то приращение функции
мало отличается от дифференциала. Кроме
того, если функция имеет конечную
производную в некоторой точке х, то ее
приращение и дифференциал также
бесконечно малы при
,
стремящемся к нулю:
,
Так как дифференцируемая функция непрерывна,
Потому что произведение ограниченной функции на бесконечно малую при DX, стремящемся к нулю, есть функция бесконечно малая.
Более того, эти две бесконечно
малые функции при
эквивалентны:
Эквивалентность
и
дает
возможность при малых приращениях
аргумента приближенно считать
Или
Что может дать эта формула?
Пусть в некоторой точке
сравнительно
просто вычисляются значения
и
.
Тогда в другой точке
,
отстоящей недалеко от
,
возможно представление :
(11.
16)
Здесь остается открытым вопрос о точности получаемого результата. Это обстоятельство снижает ценность данной формулы приближенного вычисления, но в основном она полезна и широко применяется на практике.
Рассмотрим пример. В прямоугольном треугольнике катеты a=5 м и b=12 м. Какой будет гипотенуза этого треугольника, если катет a уменьшить на 0,2 м (рис. 11.5, a)?
Найдем первоначальную длину гипотенузы:
.
После уменьшения катета a на 0,2 м гипотенуза будет равна (рис. 11.5, a)
Применим теперь формулу (11.16)
для приближенного нахождения с в связи
с уменьшением катета a, рассматривая
функцию
вида:
(B=Const);
;
В обоих случаях мы получили приближенное значение искомой величины. Но в первом случае погрешность возникает в результате приближенных вычислений, а во втором, сравнительно более простом, – В связи с применением приближенной формулы (к ней также может добавиться погрешность, вызванная приближенными вычислениями). Отметим, что при уменьшении катета a На 0,2 м гипотенуза с уменьшилась примерно на 0,08 м, а полученные нами приближенные значения при этом отличаются лишь на 0,001 м.
Рассмотрим другую ситуацию: в этом же треугольнике уменьшим гипотенузу с на 0,2 м, оставив катет b без изменения (рис. 11.5, б). Определим, как в этом случае изменится катет A:
16. Уравнение касательной плоскости и нормали к поверхности
Определение: Плоскость, в которой распложены все касательные к линиям на поверхности, проходящим через точку касания M0, называется касательной плоскостью к поверхности в точке M0.
Определение: Нормалью к поверхности называется прямая перпендикулярная касательной плоскости и проходящая через точку касания.
Так
как нормаль перпендикулярна касательной
плоскости, то в качестве направляющего
вектора можно взять вектор нормали к
касательной плоскости (координаты
вектора нормали - это частные производные.)
Тогда уравнение нормали имеет
вид:
;
То есть если уравнение поверхности
задано в виде z=f(x,y), точка M0(x0,y0)
и f(x0,y0) принадлежат поверхности,
точка M0 – точка касания, тогда
уравнение касательной плоскости имеет
вид:
.
А в случае поверхности, заданной
уравнением вида F(x,y,z)=0, уравнение
касательной плоскости имеет вид:
,
где
точка M0(x0,y0,z0) – точка касания.
Каноническое уравнение прямой
в пространстве