
- •1.Первообразная и неопределенный интеграл, их свойства.
- •2.Табличные интегралы. Метод внесения под знак дифференциала
- •3. Замена переменной. Интегралы от иррациональных функций
- •Интегралы от иррациональных функций
- •4. Метод интегрирования по частям
- •5. Интегрирование рациональных дробей
- •6. Интегрирование тригонометрических функций
- •7. Определенный интеграл, его геометрический смысл и свойства
- •8. Формула Ньютона-Лейбница. Интегрирование по частям и замена
- •9. Несобственные интегралы, их сходимость, признаки сравнения
- •Если интегралы ограничены в совокупности, откуда и следует сходимость интеграла
- •10. Вычисление площади плоской фигуры: в декартовой, полярной системах координат; для функций, заданных параметрически
- •11. Вычисление длины дуги плоской кривой
- •13. Функция многих переменных. Область определения. График, линии и поверхности уровня
- •14. Непрерывность функции двух переменных. Частные производные. Производные высших порядков
- •Частные производные
- •15. Дифференциал функции нескольких переменных и его применение в приближенных вычислениях и для оценки погрешностей Применение дифференциала к приближенным вычислениям
- •16. Уравнение касательной плоскости и нормали к поверхности
- •17. Экстремум функции двух переменных. Необходимое и достаточное условия экстремума. Нахождение наибольшего и наименьшего значений функции в замкнутой области.
- •18. Производная сложной функции. Дифференцирование неявной функции Производная сложной функции.
- •Дифференцирование неявных функций
- •19. Производная по направлению. Градиент
- •20. Двойной интеграл, его геометрический смысл и свойства
- •21. Вычисление двойного интеграла в декартовой системе координат
- •22. Вычисление двойного интеграла в полярной системе координат
- •23. Вычисление площадей и объемов с помощью двойного интеграла
- •24. Приложение двойного интеграла в механике
- •25. Криволинейный интеграл 1-го рода, его свойства и вычисление
- •26. Масса, моменты, центр тяжести плоской кривой
- •27. Криволинейный интеграл 2-го рода, его физический смысл, свойства, вычисление и приложения
- •28. Формула Грина
- •29. Условие независимости криволинейного интеграла 2-го рода от пути интегрирования. Восстановление функции по полному дифференциалу
- •30. Числовые ряды. Сумма и сходимость числового ряда. Свойства сходящихся рядов. Ряд геометрической прогрессии
- •31. Необходимый признак сходимости числового ряда. Гармонический ряд
- •32. Признаки сравнения для рядов с положительными членами. Табличные ряды
- •37. Функциональные ряды, их область сходимости
- •38. Степенные ряды. Радиус и область сходимости степенного ряда
- •39. Ряды Тейлора и Маклорена. Нахождение коэффициентов ряда Маклорена
- •40. Разложение в ряд Маклорена функций
- •41. Применение рядов Маклорена для вычисления значений функций
- •42. Взятие неопределенных интегралов и вычисление определенных интегралов с помощью степенных рядов
25. Криволинейный интеграл 1-го рода, его свойства и вычисление
Определение
Пусть кривая C описывается векторной
функцией
,
где переменная s представляет собой
длину дуги кривой
(рисунок 1).
Если на кривой C
определена скалярная
функция F, то интеграл
называется
криволинейным интегралом
первого рода от скалярной функции
F вдоль кривой C и обозначается
как
Криволинейный интеграл
существует,
если функция F непрерывна на кривой
C.
|
|
|
Рис.1 |
|
Рис.2 |
Свойства криволинейного интеграла первого рода
Криволинейный интеграл I рода обладает следующими свойствами:
Интеграл не зависит от ориентации кривой;
Пусть кривая C1 начинается в точке A и заканчивается в точке B, а кривая C2 начинается в точке B и заканчивается в точке D (рисунок 2). Тогда их объединением будет называться кривая C1 U C2, которая проходит от A к B вдоль кривой C1 и затем от B к D вдоль кривой C2. Для криволинейных интегралов первого рода справедливо соотношение
Если гладкая кривая C задана параметрически соотношением
и скалярная функция F непрерывна на кривой C, то
Если C является гладкой кривой в плоскости Oxy, заданной уравнением
, то
Если гладкая кривая C в плоскости Oxy определена уравнением
, то
В полярных координатах интеграл
выражается формулой
где кривая C задана в полярных
координатах функцией
.
26. Масса, моменты, центр тяжести плоской кривой
Масса кривой
Предположим, что кусок проволоки описывается некоторой пространственной кривой C. Пусть масса распределена вдоль этой кривой с плотностью ρ (x,y,z). Тогда общая масса кривой выражается через криволинейный интеграл первого рода
Если кривая C задана в параметрическом
виде с помощью векторной функции
,
то ее масса описывается формулой
В случае плоской кривой, заданной в плоскости Oxy, масса определяется как
или в параметрической форме
Центр масс и моменты инерции кривой
Пусть снова кусок проволоки описывается некоторой кривой C, а распределение массы вдоль кривой задано непрерывной функцией плотности ρ (x,y,z). Тогда координаты центра масс кривой определяются формулами
где
− так называемые моменты первого порядка. Моменты инерции относительно осей Ox, Oy и Oz определяются формулами
27. Криволинейный интеграл 2-го рода, его физический смысл, свойства, вычисление и приложения
Определение
Предположим, что кривая C задана векторной функцией , где переменная s − длина дуги кривой. Тогда производная векторной функции
представляет собой единичный вектор, направленный вдоль касательной к данной кривой (рисунок 1). В приведенной выше формуле α, β и γ − углы между касательной и положительными направлениями осей Ox, Oy и Oz, соответственно.
|
|
|
Рис.1 |
|
Рис.2 |
Введем векторную функцию
,
определенную на кривой C, так, чтобы
для скалярной функции
существовал криволинейный интеграл
.
Такой интеграл
называется
криволинейным интегралом
второго рода от векторной функции
вдоль
кривой C и обозначается как
Таким образом, по определению,
где
−
единичный вектор касательной к кривой
C.
Последнюю формулу можно
переписать также в векторной форме:
где
.
Если кривая C лежит в плоскости
Oxy, то полагая R = 0, получаем
Свойства криволинейного интеграла второго рода
Криволинейный интеграл II рода обладает следующими свойствами:
Пусть C обозначает кривую с началом в точке A и конечной точкой B. Обозначим через −C кривую противоположного направления - от B к A. Тогда
Если C − объединение кривых C1 и C2 (рисунок 2 выше), то
Если кривая C задана параметрически в виде
, то
Если кривая C лежит в плоскости Oxy и задана уравнением
(предполагается, что R =0 и t = x), то последняя формула записывается в виде