
- •Гипотеза Планка
- •Виды фотоэлектрического эффекта.Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •История открытия
- •Внешний фотоэффект
- •Законы внешнего фотоэффекта
- •Теория Фаулера
- •Квантовый выход
- •Внутренний фотоэффект
- •Вентильный фотоэффект
- •Фотовольтаический эффект
- •Ядерный фотоэффект
- •Современные исследования
- •Коэффициент полезного действия
- •Другие похожие показатели
- •Кпд котлов
- •Тепловые насосы и холодильные машины
- •Формулировка
- •[Править] Следствия [править] Недостижимость абсолютного нуля температур
- •[Править] Поведение термодинамических коэффициентов
- •[Править] Нарушения третьего начала термодинамики в моделях
- •Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин
- •[Править]Обратный эффект Комптона
- •Нульмерные дефекты
- •[Править]Термодинамика точечных дефектов
- •[Править]Миграция точечных дефектов
- •[Править]Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты]
- •Трёхмерные дефекты
- •Методы избавления от дефектов
- •Полезные дефекты
- •Постулаты Бора
- •§4 Опыты Франка и Герца
- •Спектр атома водорода по Бору
- •Собственная и примесная проводимость полупроводников
- •Физическая природа
- •Применение
- •Основное уравнение мкт
- •Вывод основного уравнения мкт
- •Уравнение среднеквадратичной скорости молекулы
- •Давление газа
- •Состояние физической системы
- •Примеры
- •Обобщённые координаты
- •Примеры
- •Степени свободы в статистической физике и термодинамике
- •Вымораживание степеней свободы
- •Степени свободы молекулы
- •Формулировка
- •Изобарный процесс
- •Изохорный процесс
- •Изотермический процесс
- •Изоэнтропийный процесс
- •1.Статистический и термодинамический методы
- •2.Молекулярно-кинетическая теория идеальных газов
- •2.1.Основные определения
- •2.2.Опытные законы идеального газа
- •2.3.Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева)
- •2.5.Распределение Максвелла
- •2.6.Распределение Больцмана
- •3.Термодинамика
- •3.1.Внутренняя энергия. Закон равномерного распределения энергии по степеням свободы
Степени свободы молекулы
Формула внутренней энергии газа:
,
и прямо связанная с ней формула для средней энергии молекулы газа
,
где
— количество
степеней свободы молекулы
газа,
— количество
газа (
— масса,
— молярная
масса газа),
— универсальная
газовая постоянная,
— константа
Больцмана,
— абсолютная
температура газа,
— включают количество степеней свободы молекулы.
Степени свободы молекулы вымораживаются, как это описано в параграфе выше, что означает, что эффективное i в формуле зависит от температуры и, вообще говоря, не может быть просто вычислено классическим механическим способом.
Все вращательные степени свободы у одноатомных молекул и вращательная степень свободы, соответствующая вращению вокруг продольной оси у линейных (в реальном геометрическом смысле) молекул, выморожены (то есть не должны учитываться в i) всегда, поскольку их температуры вымораживания настолько высоки, что диссоциация молекул происходит гораздо раньше, чем эти температуры достигаются.
Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:
Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:
|
где
-
степень черноты (для всех веществ
,
для абсолютно черного тела
).
При помощи закона Планка для излучения,
постоянную
можно
определить как
где
— постоянная
Планка,
— постоянная
Больцмана,
— скорость
света.
Численное
значение
Дж·с−1·м−2 ·
К−4.
Закон
открыт независимо Й.
Стефаном и Л.
Больцманом в
предположении пропорциональности
плотности энергии излучения его
давлению
.
В 1880 г. подтверждён Лео
Гретцем.
Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии по спектру излучения описывается формулой Планка, в соответствии с которой в спектре имеется единственный максимум, положение которого определяется законом Вина.
Применение закона к расчёту эффективной температуры поверхности Земли даёт оценочное значение, равное 249 К или −24 °C.
Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии длятермодинамических систем.
Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физикаДж. П. Джоуля и немецкого физика Г. Гельмгольца[1]. Согласно первому началу термодинамики, термодинамическая система может совершать работутолько за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.
Формулировка
Существует несколько эквивалентных формулировок первого начала термодинамики
В любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля (1842 г.).
Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил
Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется.
Изменение
полной энергии системы в квазистатическом
процессе равно
количеству теплоты
,
сообщённому системе, в сумме с изменением
энергии, связанной с количеством
вещества
при химическом
потенциале
,
и работы
[3],
совершённой над системой внешними
силами и полями,
за вычетом работы
,
совершённой самой системой против
внешних сил
.
Для
элементарного количества теплоты
,
элементарной работы
и
малого приращения
внутренней
энергии первый закон термодинамики
имеет вид:
.
Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.
Важно
заметить, что
и
являются полными
дифференциалами,
а
и
—
нет.
Изопроцессы — термодинамические процессы, во время которых количество вещества и ещё одна из физических величин — параметров состояния: давление, объём илитемпература — остаются неизменными. Так, неизменному давлению соответствует изобарный процесс, объёму — изохорный, температуре — изотермический, энтропии —изоэнтропийный (например, обратимый адиабатический процесс). Линии, изображающие данные процессы на какой-либо термодинамической диаграмме, называются изобара, изохора,изотерма и адиабата соответственно. Изопроцессы являются частными случаями политропного процесса.